
I
I
I
I
I
I
I
I
I
I
I
I
I
I
' I
I
1
I
I

11

A PARALLEL SIMULATED
ANNEALING ALGBRITEIM
FOR STANDARD CELL
PLACEMENT ON A
HYPERCUBE COMPUTER

Mark Howard Jones

(bASA-CR-180676) B PIIRALLEL SIBULATED 1437-2 74 20
A Y N E A L I I J G A L G C B I S B I FOR S T A I E P B D CBLL
PLACEffBBT 01 IJ BYEEBCUEE CCLSEUTEP (I11inois U n i v ,) 66 p Avai l : &TIS HC AOS/UF A01 tlnclas

C S C L 098 G3/61 006'4833

Xypro-:ed for f'ublic Release. Iiistributlon C nlim ited.

APARALLELSIMUtATEDA"EALINGALG0lU"HM
FORSTANDARDCELLPLACEMENT
ON A HYPERCUBE COMPUTER

.

BY

MARK HOWARD JONES

BS. Michigan State University. 1985

submitted in partial flalmmmt of the requiremenu

intheGraduatecollegeofthe
for the degree of Master of Science in Electrical Engineerhg

UnivaSity of Illinois at Urbana4hampaign. 1987

Urbana. Illinois

A parallel processing algorithm for standard cell placement suitable for execution on a hyper-

cube computer is presented. In the past there have been proposed several parallel algorithms for

performing module placement that are suitable for execution on a two-dimensional array of proces-

sors. ~hese algorithms had several Limitations: namely. they got stuck at iocal minimn, were su8-

ceptible to oscillation. could not handle variable size modules (standard cells). and allowed only

nearest neighbor exchanges. Recently. simulated annealing, a general purpose method of multivari-

ate optimization. has been applied to solve the standard cell placement problem on conventional

uniprocessor wmputers. T h e algorithms do not get stuck at local minima and can handle

modules of various sizes. but take an enormous amount of time to execute. In this thesis. a parallel

version of the simulated annealm * g algorithm is presented which is targeted to run on a hypercube

computer. A strategy for mapping the cells in a two-dimensional area of a chip onto processors in

an n-diicnsional hypercube Is proposed such that both small and large distance moves can be

applied. Two types of move8 are allowed: cell exchanges and cell displacements. The computation

of the cost function in parallel among a l l the ptocessors in the hypercube is described along with a

distributed data structure that needs to be stored in the hypercube to support parallel cost evalua-

tion. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell loca-

tions in the parallel environment. Studies on the performance of the algorithm on example indus-

trial circuits show that it is faster and gives better h a 1 placement r d t s than the uniprocessor

simulated annealing algorithms. An improved unipmcessor algorithm is proposed which is based

on the improved results obtained from parallelhation of the simulated annealing algorithm. This

enhanced algorithm, through the use of nonuniformly distributed moves and slightly outdated

placement data. is found to be less likely to get stuck at local minima. and is found to converge to a

better h a l placement for a variety of industry standard circuits.

iv

ACKNOWLEDGEMENT

' I

I

I wish to acknowledge the help of my advisor. Prithviraj Bancrjee. in critiquing and providing

helpful insight and information in the development of this thesis.

I
I

I
I
I

1

I

I
I
I

CHAPTER

1 . INTRODUCI'ION

V

TABU OF CONTENTS

..
. .

1.1. Motivation ..
1.2. Previous Research ...
1.3. Thesis Outline ...

2 . HYPERCUBE CONCURRENT PROCESSORS ..

PAGE

1

2.1. Introduction ...
2.2. Hypercube Messagbpagsing Architecture ..

2.2.1. Hypercube interconnection network ..
2.23. Ptoccssin g nodes ..
2.2.3. Distributed software ..

2.3. Current and Future Hypercube Systems ...
2.3.1. Commacial systems ...
2.33. Experimental systems ...
2.3.3. Comparison and benchmarks ...

2.4. Hypercube Simulator ..

3 . PARALLEL ALGoRlTHM FOR CELL PLACEMENT ...

3.1. Simulated b e g Algorithm ..
3.2. Overview of Parallel Algorithm ..
3.3. Cell Assignment to ..

6

6

8

8

11

12

13

14

16

17

18

21

21

23

24

CHAPTER

3.4. Distributed Data Structure ...
3 5 . Cost Function ..
3.6. Move Generation ...
3.7. Discussion of Moves ...

3.7.1. Mastership selection ...
3.7.2. Selection of move ..
3.7.3. Cost calculation of exchange class move ..
3.7.4. Cost calculation for dqlacements ...

3.8. h e a l i n g Schedule ...
3.9. Broadcasting New Cell Locations ...

4 . ALGORITHM IMPLEMENTATION AND PERFORMANCE ..

4.1. Impl~enmtion ...
4.2. Placement, Results ...
4.3. Timing Estimates ..

4.3.1. Computation ...
4.3.2. Conununication cads ..
4.3.3. Expected speedup ..

vi

PAGE

25

27

29

29

29

29

32

33

33

37

40

40

40

41

44

44

46

5 . IMPROVED UNPRCXXSSOR ALGOSUTHJM ... 49

5.1. Introduction .. 49

5.2. Overview of New Algorithm ... 49

5.3. use of PSudopatallel Moves .. 50

LIST' OF TABLES

Table Page

2.1. Hardware capability comparison for various systems ..
3.1. Variation of alpha with ttmperature ...
3.2. Suggested attempts per cell for various size circuits ...
3.3. Broadcast steps for threedm * msional hypercube on a message from nodes 1.2. and 7

...
4.1. Placement wiring length comparison ...
4.2. Move timing requirements on MC68020 in mil lkco nds ..
4.3. Move timing requirements on 80286 in milliseconds ..
4.4. Memory usage for StMdSrd circuits ..
4.5. Estimate of time to complete the four types of moves in milliseconds using Intel hy-

percube ...
4.6. Time to complete 32 movas in millkco nds "
5.1. h p l e window specifications ..
5.2. Cost vs number of multiple moves for 64-cell circuit ..
5.3. Comparison of b a l cost for using or not using 16 multiple moves
5.4. Comparison of cost vs distribution for (1 : %) double window
5.5. Comparison of cost vs distribution for (1 : %) double window
5.6. Comparison of cost vs distribution for (1 : 9h) double window
5.7. Comparison of cost vs dwibution for (1 : 1/31 double window
5.8. amparison of cost vs distribution for (1 : 2/31 double window
5.9. amparison of cost vs d-bution for (1 : 213 : 1/31 triple window

18

34

36

39

43

'44

45

46

47

48

53

55

56

56

56

57

57

57

58

Table

5.10. Comparison of cost vs distribution for (1 : %I : 35 : 'k) quadruple window
5.11. CornpatiSon of cost vs windowing scheme for industry standard circuits

ix

Page

58

61

. I

LIST OF F'IGURES

Figure Page

1.1. Example standard cell VLSI layout ...
2.1. Threedimensional hypercube
2.2. Four-dimensiod hypercube (16 pmcesSing nodes) ..
2.3. Six-dimensional hypercube (64 ptoossing nodes) ...
2.4. Subnetworks of fou-dhenm 'onal hypercube ...
3.1. Area map of 64-processor hypercube ...
3.2. Example net and corresponding memory structure ...
3.3. Cost function evaluation ..
3.4. Parallel movc8 in the hypercube ..
3.5. Thretdim ensional hypercube ..
4.1. Cell placement with 16-processor hypacube ..
4.2. Cell placement with uniproassot Timberwolf
4.3. Temperature vs cost ...
4.4. Temperature vs percentage accepted moves ...
4.5. Link delay for various packet sizes ...
5.1. Improved simulated amealin g algorithm ..
5.2. O r i g i i net placement ...
5.3. Placement after initial acceptance ..
5.4. Example use of windowing in detaminin g cell movement for cell M
5.5. Temperature vs wst ...
5.6. Temperature vs percentage accepted moves ...

2

8

9

10

11

26

28

30

31

39

42

42

43

43

45

50

51

51

53

60

60

Figure

5.7. Cell p-rcunent with windowing and multiple moves ...
5.8. Cell placement witb conventional simulated annealing algorithm

. . .

xi

Page

62

62

1
I
I
I
I
I
1
I
I
I
I
I
I
1
I
I
I
I
U

CHAPTER1

INTBoDucIlON

1.1. Motivation

AS the complexity of digital systems implemented in VLSI increases: there is a greater need

for automating the design of the layout for these systems. One of the areas of VLSI design auto-

mation which has received substantial attention in recent years is in researching algorithms for

determining the placement of simple cells or modules in a VLSI design. The placement problem

consists of hding an optimum assignment of N modules on a board with respect to some criterion

prescribed on the interconnections of these modules. such as minimal wire length or signal propaga-

tion delays. The terms "module" and "board' are used as generic terms and apply equally well to

all circuit levels. The physical design of computers includes several distinct categories of place-

ment problems. depending on the type of packages involved.

The simplest placement problems arise in designing chips with structured layout rules. In

these "gate array" chips. standard logic circuits. such as three or four-input NORs, are'preplaced in

a regular grid arrangement [l. 2). The designer specifies only the signal wiring. which occupies the

final. highest layers of the chip. In more general VLSI design. the standard cell layout is such that

a set of standard cells of constant height and variable width are arranged in horizontal rows with

pads placed around the periphery of the chip. These standard circuits may all be identical, or they

may be described in terms of a few standard groupings of two or more adjacent cells. Further-

more. macro blocks may also be present on the chip. An example typical standard cell layout is

shown in Figun 1.1.

Given a set of standard cells and a net list which describes the interconnections among the

cells, the objective is to place the cells so as to minimize the total length of wires interconnecting

the cells and to minimize the total area of the chip. Manual placement generally results in area and

2

?AD ?AD ?AD ?AD

?AD

Figure 1.1. Example standard cell VLSI layout.

?AD ?AD ?AD

performance efficiency for small circuits. However, for very large circuits. not only is the design

time prohibitively long, but the area and performance d e r . The problem that arises in automat-

ing this process is that like many combinatorial optimization problems this problem is NP-complete

131. The time required to perform an algorithmic solution. which surveys all possible solutions of a

given placement problem, grows exponentially with the number of cells. Fortunately, in practice

one nads merely a good solution and some sort of 1~ssuf81~a that the absolute minimum solution is

not significantly better than the one found. Several heuristic methods which attempt to accomplish

this have been developed that find good solutions with acceptable computational cost.

1.2. p n v i o u s R ~

"here are two basic strategies for heuristics: "divideand-conquer" and "iterative improve-

ment." In dividtnnd-conqua algorithms such as min cut [41. one recursively divides the problem

I
I
I
I
I
B
8
I
I
I
I
1
8
I
1
1
I
I
I

1
I
I
1
I
I
I
I
I
I
I
I
I
1
1
I
I
I
I

3

into subproblems of managtable size. then solves these subproblems individually. The solutions to

these subproblems must then be patched back together. For this method to produce very good

solutions. the subproblb must be naturally disjoint. and the divisions made must be appropriate

ones so that errors made in patching do not offset gains obtained in applying more powerful

methods to the subspaces.

Iterative improvement algorithms such as forcedirected interchange, pairwise interchange.

neighborhood interchange. and fod-dirccted pairwii relaxation 15.6.71 start with the system in

a known codguration. A standard rearrangement operation is applied to all parts of the system in

turn, until a rearranged configuration is observed which improves the cod function. The rear-

ranged condguration then becomes the new configuration of the system. and the process is contin-

ued until no further improvement can be found. Iterative improvement consists of a search in the

coordina?,e work space for rearrangement skps which lead "down hill," Le.. reduce the prescribed

cost function. Smce this search usually has a tendency to get stuck at a local and not the global

minima of the objective cost function. the pmass normally has to be carried out several times.

starting from several Merent randomly generated initial configurations. and then the best place-

ment obtained is used. In addition to these problems. conventional heuristic algorithms usually do

not allow for the amount of flexibility and extensibility desired by users.

To avoid the problems associated with conventional heuristic placement algorithms. a family

of heuristic optimization algorithms have been devised based on simulated annealiig [8]. These

algorithms generate the next placement configuration randomly and can climb hills. i.e., changes

that generate configurations of higher cost than the present configuration are sometimes accepted.

These "hill climbing" changes are only accepted according to a certain criterion which takes the

state-of-thtseruch process into consideration.

The simulated axmeah g technique has been proposed and applied to the standard cell place-

ment problem in a program called Timberwolf [9.10]. which by applying all displacements.

exchanges. and orientations of cells randomly. avoids getting stuck at local minima and thus

4

achieves near-optimal placement.

Recently. some researchers have started to investigate speeding up simulated annealing algo-

rithms by running them on parallel processor systems. Asrts et al. have proposed schemes for

parallelizing simulated annealing algorithms for several general classcs of problems and have dis-

cussed theoretical convergence characteristics [ll]. A parallel algorithm for the Traveling Salesman

Problem based on simulated annealing has been reported for the hypercube [12]. Parallel algo-

rithms for partitioning and routing have been proposed by Chung and Rao 1131.

Two multiprocessor-based simulated annealiig algorithms for the standard cell problem have

been reported by Rutenbar and Kravitz [14,15]. The first scheme, called Move Decomposition, par-

titions the computations of the individual move across pmcffsors and thus allows the cooperating

parallel subtasks to evaluate the eEects of this move more rapidly. The second scheme. called the

Parallel Moves strategy, allows multipltmove evaluation in parallel but accepts only one of the

moves. In this thesis, we propose a parallel simulated annealing algorithm that is targeted to run in

a local memory message-passing paraUel pmcessing environment, namely the hypercube computer.

There are a number of basic dif€erences in the three approaches to parallelize simulated

annealing. In the b t two cases. the parallel algorithms are based on a shared memory model,

whereas the third uses a local memory model. The first is basically simulating a serial-simulated

annealing environment, but evaluating each individual move faster. The second algorithm evalu-

ates multiple moves in parallel but accepts only one move. Hence, its convergence characteristics

are identical to the uniprocessor algorithm. In the third case proposed in this thesis, the moves are

evaluated in parallel and accepted/rejected in parallel on the basis of changes in the cost function

for each move. assuming that the other moves are not made. The theoretical considerations of

whether the annealing properties are still preserved when the cost calculations are based on slightly

outdated information and when only a restricted set of moves are allowed, is a subject of future

research. Experimentally, we have veribed that our algorithm works.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
0
I
I
1
I
I
1
I
I
I
I

5

1.3. TheSisOutline

In this this, we present a parallel algorithm using simulated annealing on the hypercube com-

puter. The basic idea used in the algorithm involves parallel exchange and displacement moves in

Merent dimensions of the hypercube. and acceptandrejection of the moves on the basis of

changes in cost functions, ignoring the &ects of other moves.

In Chapter 2, a detailed description of the hypercube architecture and an overview of the Intel

hypucube simulator. which was used for program development. will be presmted. In Chapter 3,

we will briefly describe conventional simulated annealiig. and then discuss a parallel version of

the algorithm. W e will describe the data structures that are necessary to support various parallel

move evaluations and discuss how the subtasks for evaluating the acceptability of parallel moves

are assigned. We will present a novel tree broadcasting strategy for the hypercube that is used

extensively in our algorithm for updating cell locations in the parallel environment. In Chapter 4.

we will describ the implementation of the algorithm on an Intel hypercube simulator. W e will

report on the performance of the proposed algorithm for several actual standard circuits used in

industry and present some accurate estimates of the execution time for the algorithm. We will

show that the parallel algorithm gives about 10-209h better h l placupents than conventional

uniprocessor simulated annraling algorithms. F d y . in Chapter 5. an improved uniprocessor

simulated annealing algorithm, based on the ben&ts observed from parallelizing the conventional

simulated annealing algorithm. will be presented. We will demonstrate that this improved algo-

rithm is less likely to get stuck at the local minima of the objective function, and thus converges to

a final placement which is better than the final placement generated by the conventional Uniproces-

sor algorithm.

6

21. htroducti~

Supercomputers such as the IBM 3081/3084, CRAY-2, and Burroughs D-825 normally

achieve their high performance by increasing the raw speed of the electronic components and logic

circuits. For these mammoth computers, the switching and propagation delays are measured in

nanoseconds. and data are propagated at speeds close to the speed of light. Unfortunately. these

uniprocessors are nearing the limits imposed by physical and electrical constraints. Electronically.

uniprocessor computers are reaching their speed limit. To increase the computing speed further,

pipelining and parallelizing of operations must be exploited at the circuit level, making these super-

computers very large and very expensive.

An alternative approach to supercomputing is through paralleli i at the processor level. We

are on the verge of a revolution in computing spawned by advances in computer technology. Pro-

gress in very largescale integration (VLSI) is leading not so much to faster computers, but to much

less expensive and much smaller computers. Le.. computers contained on a few chips. These chips

make it practical to build v a y high-performance computers. or supercomputers. consisting of a

large number of smaller computers combined to form a Single concurrent processor.

The concept of interconnecting multiple, small, inexpensive microcomputers is not new. A

number of multiprocessing systems of differing codgurations are in existence. Multiple procasors

communicating with each other via single or time shared bus architecture. such as DCS 1161. are

very common. In this architecture. several computers are COMCCW~ to the bus and communicate

with each other through token messages. A time shared bus is easy to construct. but the

processor- to-pnr communications are limited because only one information exchange is

allowed at any one time. In another approach. STARAN [171 uses a complete point-to-point con-

I
I
I
I
1
I
I

I
I
I
I
I
I
I
1
I
I

a

I
I
I
I
1
1
1
I
I
1
I
I
I
1
1
I
I
I
1

7

nection between processors. This speeds up proassor communications and allows simultaneous

data trader: however, the number of interconnection lines increases rapidly as the n u m b ob pro-

cessors increases. C:mmp [la], a multi-miniprocessor at CarnegieMellon University. uses crossbar

switches between a bank of memories and a bank of processors. This causes only slightly degraded

simultaneous transfer ability; however. just like the STARAN, the crossbar network increases in

complexity too fast as the number of functional units increases. Mor& recently. Jordon 1191

designed a FEM maclune * . which is a t w o - d i i n a l array. that allows any proassor to commun-

icate directly with its eight nearest neighbors. Tuazon [20] added more flexibility by providing a

switching network that allows a proceasor to create a communication path to any other processor-

The advent of cost-effective VLSI components in the past few years has made feasible the

commercial development of massively parallel computers with upwards of 1024 or more proces-

sors. Many dil€erent parallel architectures are under development, but the most commercially

SUCCtSSfUl largescale parallel architecture to date has bem the Boolean hypercube, implementations

of which are available from at least four dif€erent vendors. In the brief time since their intruduc-

tion. these machines have already gone from experimental prototype status to near-commercial

supercomputer performance and have done w) at a relatively modest cost.

A signiscant dHerence between hypercubes and most other parallel processors is that these

multipleinstruction. multiple-data machines (MIMD) use messagepassing instead of shard vari-

ables for communication between concurrent procesres. Each processor has only a small private

local memory. Activities with other proaswrs are coordinated by sending messages through an

interconnection network. This type of architecture is more readily scaled up to very large numbers

of processors than multiprocessor designs based on globally shared memory. The hypercube net-

work is connected densely enough to support efficient communication between arbitrary sets of

processors. yet sparsely enough to be relatively simple and inexpensive to build. Another virtue of

the hypercube network is its flexibility: many other interconnection topologies (rings. grids, trees.

etc.). are subnetworks of the hypercube: hence the hypercube is an ideal test bed for experimenta-

8

tion with parallel algorithms intended for many dserent types of distributed-memory. message

passing multiprocessors.

A hypercube consists of 2N procesors that are connected by the b & y N-cube interconnec-

tion. The processors are consecutively numbered or tagged by binary integers. Le.. bit strings of

length N , from 0 through 2N-1. In a hypercube interconnection network each processor is directly

connected to N other proceswrs whose binary tags dser from its own by exactly one bit. Topo-

logically, this arrangement places the procasors at the vertices of the N-dimensional cube. For

example. in Figure 2.1. a 3-cube is pictured which has Z3 processors placed at each of the vertices

and communication links, which directly connect the processam. r e p s a t e d by the twelve edges of

the 3-cube. Simultaneous communications between several pairs of nodes can therefore occur with

Figure 2.1. Thra-diensional hypercube.

1
I
1
8
1
1
I
I
I
1
1
I
1
I
I
1
1
1
I

I
I
I
I
I
1
1
c
I
1
I
I
R
I
1
I
I
I

9

this type of interconnection network.

Higher-rder (hyper) cubes are more diflticult to visualize. Figure 2.2 shows a four-

dimensional hypercube which can be d d b e d as a cube within a larger cube with corresponding

corner nodes connected. Hypercubes of arbitrary dimensions can be constructed by replicating the

one of nut-lower dimension, then connecting corresponding nodes. One of the advantages of the

hypercube network is that as the number of processots increases. the number of connecting links

per processor grows only logarithmically. so that very large numbers of processors ~ o ~ e ~ t e d in a

hypercube network become both feasible and attractive.

In practice, the actual physical layout of the hypercube's proccsors is a limntar arrangement in

a card cage or a planar arrangement on a printed circuit board. Cube connections are then made by

wires. conducting layers. or backplane. A planar view of a sk-dimensional hypescube is shown in

.

10

Figure 2.3.

If a message needs to be sent between a pair of nodes that are not directly connected, then

they are routed from node to node until they reach their destination. The routing path can be

easily derived by inverting one bit at a time of the bits in the source address which d s e r from

corresponding bits of the destination address until it exactly matches the destination address. For

example. to route data from node 0101 to node 1010 in a four-dimensio& hypercube, the inter-

mediate nodes. 0100. 0110, and 0010. would be uscd. It can be easily verified that for an N-

dimensional hypercube. the furthest node from any starting node is only lo@ away. For every

pair of nodes there are (l o g f l) ! possible routes. This redundancy can be exploited to enhance

communication bandwidth and fault tolerance of the hypercube network.

Figure 2.3. Six-dimensional hypercube (64 procesSing mdes).

11

Through software. a hypercube can be adapted to model other interconnection configurations

by ignoring some of the interconnects. FOP example. in the four-dimensional hypercube. by ignor-

ing some of the interconnects one can arrive at the variations shown in Figure 2.4 a. b. and c as the

3D cube, 2D plane, and toroidal mesh. The data routing requirements will &et the particular

variation used. For example. problems which are normally represented in array form. such as

matrix operations and sets of linear equations, etc.. can be implemented &jing a 2D codpa t ion .

Analysis of thntdicnsional structures can use the 3D topology.

An attractive feature of the hypercube is its homogeneity. Because of this. all the processing

nodes are normally designed to be identical. Nevertheless. with any distributed system. a need

usually arises, either by necessity or by convenience. to have a separate proassor that acts as m85

ter controller or manager of the rrmaining processors. This special processor. usually called the

host. is generally not part of the main hypercube interconnection network. whose procesors are

a) * ensionalcube b) Two-dimensional plane b) toroidal mesh

Figure 2.4. Subnetworks of four-dimensional hypercube.

12

referred to as node processors or simply nodes. The role of the host is to initiate a computation.

collect results upon completion, and serve as the inputloutput (IO) link to the outside world. The

host must be directly connected to at least a subset of the nodes in the hypercube and, p&ferably.

to all of them, perhaps by a global bus that is used only for h d n o d e communications as opposed

to nodelnode communications.

Because the hosts need to do more powerful operations such as IO, pro& down loading, and

system diagnostics. the architecture of the host is normally faster and more powerful. Because this

pmccssor is a critical link in the hypercube. Le.. its loss would disable all IO. the host is normally

made to be more fault tolerant.

Each of the hypercube's processing nodes is composed of three separate components the CPU.

local memory, and communications circuitry. Some system designs have a separate communica-

tions copmasor to handle node-to-node communications thus allowing for simultaneous computa-

tion and communication. Physically. each processing node is built from as few VLSI chips as possi-

ble in order to increase speed and to keep space requirements low.

2.2.3. Distributedaoftwarc

The hardware structure of the hypercube when viewed at the level of nodes and channels is a

difficult target for programming any but the most highly regular computing problems. Most

hypercube resident operating systems create a more flexible and machineindependent environment

for concurrent computation. Instead of formulating a problem to fit on the nodes and on the physi-

cal communication channels that exist only between certain pairs of nodes, the programmer can

formulate problems in terms of processff and logical communication channels between processors.

This process model of computation is quite similar to the hardware structure of the hypercube but

is usually abstracted from it.

Processes are the basic unit of computations and can be described as a sequential program that

sends and receives messages. A single node may contain many pmceses. All processes execute con-

currently, whether by virtue of being in difFerent nodes or by being interleaved in execution within

1
I
1
E
1
I
I
I
I
I
' I
I
I
I

I !

I

1
' I

13

a single node. Multitasking in such an environment is quite feasible. Each process has a unique

global identfication that arises as an ad- for messages. All messages have headers containing

the destination and the sender identiftcation and a message type and length. Messages are queued in

transit. but message order is preserved between any pair'of processes.

Because it has only local memory, the hypercube needs to employ a distributed operating

system. An operating kernel will d d e in each node processor to supervis;! user proasses Mnning

on the node and to handle mes91ge W c . In particular, the kernel in a given node sends. receives.

and queues messages for ptocessc~ running on its node, and may also automatically forward inwm-

ing messages intended for processes running on other nodes. freeing the main node processor of

much of the communication overhead. A variety of o p t i n g systems, compilus. and other paral-

lel processing development tools have been designed and implemented for use on the hypercube

architecture [21.22.23,24]. Procffsot scheduling is an important area which has received substan-

tial research in recent years [25,26,271.

The host is responsible for compiling application programs and loading the resulting object

code into the appropriate node ptoassors. Once the host has initiated a computation. the host and

node processors all proceed asynchronously, coordinated only by the exchange of messages contain-

ing problem data or control information.

23.cprrCntandEhtpnHypercubesgstemS

A hypercube of computers was often dscussui in the mid 1970's as a practical means to

implement a concument proassing environment [28.29]. The Russians [301 built a 32-node hyper-

cube in the late 1970s with positive results. Many references have appeared in literature since

then concerning the construction or use of hypercube computers [31.321. The pioneering work was

h l l y brought to practical fruition in 1983 with the Mark I "cosmic cube" [331 at the California

Institute of Technology, where it has since been in regular use for solving a wide variety of impor-

tant scientific problems. Transfer of this new technology into the commercial sector has been rela-

tively swift. Intel Scientific Computers Corp. announced the first commercially available

14

hypercube. the Intel Personal Super Computer (iPSC) [34]. in early 1985. Several other commercial

vendors soon followed: Ametek Computer Research's Ametek [MI. NCUBE Corp. [361 with the

NCUBWten. and Floating Point Systems Inc. with their T series. Further joint development by

Caltech and the Jet Propulsion Laboratory has since created a new generation of hypercubes. the

Mark 11 and Mark III.

The availability of these machines is making possible widespread &mentation of large-

d e parallel computing for realistic applications. Moreover, these machines am moving quickly

from experimental prototypes to genuine supercomputer performance and doing 90 at a relatively

modestcost.

Several commercially hypercube systems have become available recently. Even though they

are all built around the same hypercube messagepassing architecture, their actual hardware and

software implementation and performance vary considerably from system to system. Three of the

systems have already ban delivered to customers. These systems include the Intel ipsC. the

Ametek Computer Research's Ametek. and the NCUBE Corporation's NCUBWten.

Primarily to reduce development time, the fust systems introduced used proven widely avail-

able VLSI circuits as the backbone of each of the node processors. The Intel and h e t e k systems

use the 16-bit Intel 80286 [37] to perform all general purpose computations. In addition to its high

computational ability, the 80286 was selected for its built-in support of a custom coprocesror, the

80287. The coprocessor interface provides a very low overhead mechanism for a client program to

invoke task management functions that are implemented concurrently. By using widely available

technology. both systems were able to use existing hardware and software development tools and

thus reduce system development time.

The communications hardware in both systems is rather simple and slow. Node-to-node com-

munications are run over links controlled by an Intel ethernet chip at peak rates of 10

megabitdsecond. Because of this relatively simple communications hardware and the need to

I
1
I
I
I
I
I
I
I
I
I
I
I
I
1
1
1
t

15

perform a large part of the communications overhead in software, link delays for even very simple

messages am in the millkco nds range for both systems [38]. This makes communication very

expensive in comparison to computation timee This means t h a E for an algorithm to be feasible for

signacant speedup on these systems, the ratio of computation to communication has to be rather

large. Both systems also tend to have limited amounts of local memory. on the order of 512K

bytes.

The Ametdc system's communication system is small-packet based, which means that small

packets take sigdkantly less time to traverse the lhks than do larger ones. The Intel m s use of

ethernet with standard 1K byte packets enables it to have constant delay for packets of less than

1K bytes. For larger packets, multiple packets have to be sent.

Both of these systems were designed to allow for easy expansion with configurations from 16

to 128 nodes available in both systems. Additionally, recent developments in the Intel iPSC allows

for up to 4 megabytes of RAM at each node and to have array ptoassors and accelerators attached

to node procesmrs to enhance performance.

These initial systems were primarily designed as a quick implementation of the hypercube

architecture for commercial use. Systems which followed these initial entries, primarily the

NCUBWten. strived to develop special purpose hardware specifically targeted for hypercube use.

In mod of the parallel systems beiig proposed or manufactured, each node consists of many chips.

often more than 100. In contrast. the NCUBWten no& has only 7 chips. and 6 of them are

memory. The NCUBWten uses state-of-the-art VLSI to integrate most of the system (except

memory) at each node onto a single chip. Each node is designed to have 128K bytes of local

memory with local groups of pmcess0l.s connected to a global 500M byte disc. The NCUBJYten-

node processor is a complex chip of about 160.000 trsnsrdo rs that integrates memory interface.

communications links, and a high-speed 32-bit processor with 64-bit floating point. Each node is

capable of performing at a peak rate of 0.5 megdops. A broad range of error~rrectiag mechan-

isms in the data paths is incorporated to insun reliability. The NCUBWten is expandable from 16

to 1024 procesors. and unlike the ipsC and Ametek allows for extremely high-speed IO at each of

the processing nodes without the need to transfer information to the host processor hit.

23.2 Erperimentalsystems

The fmt experimental hypercube implementation to get significant recognition was the Mark I

built at Caltech, commonly known as the cosmic cube 1331. "hiis system ,consisted of at most 64

processing nodes based on the Intel 8086 microprocessor as data processor and 8087 coprocessor as

the floating-point procesor. Each node was equipped with 128K bytes of RAM. Full duplex com-

munication channels running at a slow 2 megabitd-nd were utilized for node-to-node Communi-

cations. Because of the slow ptocessor and communications speeds and the limited 128K bytes of

local memory. the systun was definitely not in the supercomputer range, but even with these slow

microelectronic technologies. the 64-node machine was found to be quite powerful for its cost and

size. The performance of the Mark I encouraged Caltech to develop an enhanced model.

The follow-up to the Mark I was the Mark 11 system [39]. The Mark II was built in coopera-

tion with the Jet Propulsion Laboratory. This system can be conSgured up to a 128-node network.

Intel 8086 processors and 8087 c o p r o c ~ r s were again used, and RAM was increased to 256K

bytes per node, with additional external IO incorporated into groups of node procesrors. Enhanced

hardware and software have significantly increased the systems' performance over that of the

Mark I. A follow-up system, the Mark m [40], will be a vastly more powerful machine, con-

structed from nodes. each of which has two MC6802Os. floating point accelerator chips, and 4

megabytes of memory [41]. These powerful nodes. along with equally powerful nodeto-node

communications hardware. are expected to allow the Mark IJI to match or surpass the performance

- - I
1

I
I

of most standard supercomputers available today.

sevaal other systems are in various aages of resear& in a number of universities throughout

the country. The most ambitious system being developed is at the Los Alamos National Laboratory

in connection with the University of New Mexico [42]. This system will be primarily hardware

oriented. Rather than approaching the hypercube problem by using nodes with minimal computing

17

resources. the engineers at Los Alamos have elected to implement the architecture. using nodes with

sufficient computing nsources to address inkresting problems. A variety of off-theelf and spe-

'

8
cially designed VLSl circuits wil l be used in an attempt to allow for upwards of 20 megaflops of

computational power at each node A small local memory of between 16K and 64K bytes. along

with a large disk with a capacity in excess of 3OOK bytes, is incorporated into each ptocessing node.

Fast nodtto-node links with rates in excess of 40 megabits/semnd will ddo be incorporated. This

system is expectad to have a peak performance in excess of 20,000 megaflops

The performance of a concurrent processing program depends on the hardware. architecture.

and programming algorithm uscd. The mnximum number of concurrent megaflops of cornputa-

t i o d power is a commonly used yardsticke This number as normally quoted is obviously only

"potential" performance. which can only be achieved through dEcient programming. Because of the

nature of the hypercube architecture, several other factors have to be taken into account. The

hardware factors effected by a particular hypercube implementation are

1) Memory Size

Invariably, as the node memory increases. the performance of the system also improves.

Unfortunately. large memories can be vcry expensive. secondary memory or dual port

memories which allow simultaneous communication and computation may be used in some

CIISes.

2) processln * sspaci
Since scientific applications are the primary users of hypercubes. it is essential that the

floating-point operational sped be as large as possible to solve these computationally inten-

sive problems.

3) Communication speed

High-speed communication is veq important in a mesagepassing environment. Not only

does the link transfer rate have to be high, but the time spent in doing the overhead associ-

c

18

S y a U n
Mark I
Mark XI

ated with transrm ‘tting. routing. and receiving has to be kept low.

MaxNumber T p o f Memory Computational Communication
Roceamrs CPU S i (bytes) Mops (peak) Mbits/Second

64 Intel 8086 128K 8 2
128 Intel 8086 256K 15 8

Table 2.1 gives a comparison of the hardware capabilities of the various systems discussed in the

preading two sections.

Mark III
ipsc

Ametek

Table 2.1. Hardware capability comparison for various &stems.

1024 MC68020 4M > lo00 -
128 Intel 80286 512K-4M 20 10
128 Intel 80286 5 12K 20 10

NCUBWtm
Lus Alamos

1024 CustomVLSI 128W5OOM 512 10
1024 CustomVLSI 64K+3OOK >2oooo 40

2.4. Hypercube Simulator

Due to the present unavailability of an actual Intel hypercube at the University of Illinois,

initial testing of the algorithm to be presented in the next chapter has been completed using the

Intel iPSC Simulator running on a SUN 3/50 work station system under UNIX 4.2 [431. This

simulator was chosen because of assurances that programs which executed properly under the

simulator could be transferred to an actual ipsC system and operate with only minimum or no

modification required.

The simulator package consists of a simulator program and a set of libraries which simulate

hypercube operations in a sequential ptocessing environment. This event-driven simulator provides

an interactive interface to the user. which simulates a large portion of the ipsc‘s host node com-

mands. These commands allow the usv to load executable code into each of the nodes of the

hypercube and to initiate execution. Nodal 7 are simulated in the unipmcesror environment

by forking off UNIX pmcesres.

19

The major difference between hypercube algorithms and uniprocessor algorithms is the need to

do messagtpassing between concurrently operating processors. The primary responsibility of the

simulator is to model these message transfers in such a way that ordering of messages is preserved.

In order to rwllovc the programmer as far as possible from requiring an understanding of the exacE

communication routing requirements for a given message. a system of logical channels is adopted in

the ipsc system and its simulator. A channel, as used in the iPSC system. is a 64-byte block of

memory that contains information about a message to be sent or received. Typical information

contained in this block of memory is the sours node and process id, the destination node and pro-

cess id. and the message length. A sendmg process needs to establii a channel to contain this

information before a message can be sent. Likewise. a receiving pmaso must also establish a chan-

nel to receive this information before the message can be received. Once an operation (send or

receive) has been completed, the information is no longer needed. and the channel can be used again

by another message. If a process needs to sendreceive more than one message simultanesusly. the

process needs to open a channel for each of the simultaneous sendreceive operations. Because of

the nature of these logical channels. the programma is relieved of determining the actual path over

which a message travels. The operating kernel at each node of the hypercube will determine the

optimal path between the two nodes connected by the logical channel.

A typical message transfer in software requires a call to a procedure aend by the node proces-

sor wishing to send a message. Procedure aend initiates the ttansrmssl *on of a message to another

node pcessor. The caller can wait for this ttansrmssl * 'on to complete or simultaneous computation

can be taking place. A typical call to send is of the form:

amd(ci. type, buf, len. node)

where
ci : Channel identikr of channel over which message is to be transnu 'tted

type : User specified integer value referring to type of message. The
receiving node uscs this value to distinguish multiple incoming messages.

buf : Pointer to the continuous block of memory (M e r) that contains

20

the message to be sent.

len :Numberofbytesinbuf€ertobetransrm 'tted.

node : Physical address of node to receive message.

In a similar manner the node processor which is to receive the message calls a receive procedure. A

typical receive call is of the form

Ftceivt(ci. type. buf. &at. &node)

where
ci : Channel identiiier of channel over which message is to be received.

type : Integer value referring to the type of message wanting to receive.

buf : Pointer to the buffer where the received message is to be stored.

cnt : Upon reception of a message of the proper type.
cnt will contain the number of message bytes received.

node : Upon reception of a message of the proper type. node will contain
the identidcation of the processor which sent the message.

Through the exchange of data by sending and nceiving of messages to and from other procesmrs in

this manner. nodes can exchange required data and coordinate activities.

21

3.1. Simulated Annealing Algorithm

Simulated annealing. as proposed by Kirkpatrick [$I. is a popular Monte Carlo algorithm fox

combinatorial optimization. Simulated annealing is a variation on an algorithm introduced by

Metropolis 1441 for approximate computation of mean values of various statistical-mechanical

quantities for a physical system in equilibrium at a given temperature. The Metropolis method.

combined with Kirkpatrick's 'several temperature' method. is collectively called simulated anneal-

ing.

The search for a minimum cost function in a simulated annealing algorithm has a close anal-

ogy to the physical process by which a material changes state while minimizing its energy. When a

material is crystalized . from the liquid phase. it must be cooled slowly if it is to assume its highly-

ordered, lowest-energy state. At each temperature during the annealing ptocess. the material is in

equilibrium. Le.. the liielihood of its being in a given state is governed by the Boltzman disttibu-

tion for that temperature. As the temperature demases. the distribution becomes concentrated on

the lower-energy states until, when the temperature flnally reaches zero. only the minixnumznergy

stads) have nonzero probability. However, if the cooling is too rapid, the material does not have

time to reach equilibrium. Instead, various defects become frozen into the structure.

Because conventional iterative improvement algorithms forbid changes of state which increase

the cost function. they are much like rapidly reducing a physical system to zero temperature in a

very small period of time. Simulated annealing is thus a variation of the conventional iterative

improvement algorithms in which uphill moves are permitted in the cost function under the con-

trol of a slowly reducing temperature parameter.

22

A simplified algorithmic structure of the simulated annealing algorithm is given below:

PROGRAMSIMULATEDANNEALING
T = To;
x = xo;
While (stopping criteria not satisfied)

X' - Generate(X1;
evaluate cost(.'>;
If(accept(cost(X'). COst(X1 1)

X-X;

While (inner loop criteria not satisfied)

ENDIF.
ENDwHLFz
update(T);

END-
END PROGRAM

This algorithm is characterized by three main functions: accept, generate. and update. The func-

tion accCpt is used to determine if a proposed new codguration of the circuit should be accepted.

While several accept functions can be used j45.46.471, a probabilistic exponential function is nor-

mally used for standard cell placement optimization because of its proven ability in other similar

optimization problems. The accept function is given below:

FUNCI'ION accept(cost(X'). cost(X)
AC ~s t (X') - cost(X);
If(AC < - 0)

else
Return(TRUE):

y * &-AC IT);
r = random(O.1);
I f (r < y)

else

ENDIF:

Return(TRUE);

Rcturn(FALSE);

ENDIF:
END FUNCTION;

New codgwations characterized by a negative change in the cost function (AC <-O) always

satisfy the acceptance criterion. However, for new codgurations characterized by AC >O. the

23

eempaature parameter T and a random number generator play fundamental roles. If T is very

large. then r is likely to be less than y, and a new state is almost always accepted irrespective of

AC. If T is small, close to zero. then only new configurations which are characterized by very

small AC >O have any chance of being accepted. In general, all states with AC >O have smaller

chanw of satisfying the test as the temperature decreases.

The generate function selects a new configuration of the circuit. This means randomly mov-

ing cells within the circuit. These moves can either be the exchange of cells. the displacement of a

single cell, or an orientation or mirroring change in a cell. In the presented simulated aMealing

algorithm, the program variable X represents the present placement of cells and X repnsents a

new candidate cell configuration created by the generate function.

The updat8 function. a b called the anmaling or cooling schedule. determines a new value for

the temperature after completion of the inner loop. The update function is very important in

determining the convergence properties of the simulated annealing algorithm. A broad range of

update functions which return monotonically demasing values of temperature have been found to

guarantee convergence of the simulated annealing algorithm to an optimal or a near optimal solu-

tion [48,49,50.51.52.531.

3.2. overview of Parallel Algorithm

The simulated annealing technique has been proposed and applied to the placement problem in

a program called Timberwolf [9.10]. which by applying displacements. exchanges. and orientation

changes randomly, avoids getting stuck at local minima and thereby achieves near-optimal h a 1

placement results. Timberwolf has been shown to provide substantial chip area savings in com-

parison to existing standard cell layout methods. We now describe an algorithm for performing

the standard cell placement using a variation of the TmberWolf algorithm on a hypercube of

log (P)-dimensions connecting P processors. Let us suppose that we are given the problem of plac-

ing N standard cells where N > > P. An outli i of this algorithm is shown below. Each of the

steps in the algorithm will be described in the following subsections.

STEP 1. Perform initial cell assignments in P processors.

24

1
rn 2. Determine initial temperature.

STEP 3. While "Stopping criteria" : temperature < 0.1 not reached

STE9 4. Generate new temperature

STEP 5. For inner-lmp-count - 1 to NA
P NA - (N x atmnpt-parameter 1 / (log(P) x PI2 W *

STEP 6. For each dimension i-0 to log(P)-l do

1

I
1

STEP 7. Randomly select P/2 moves (exchange or displace) in parallel
among pairs of PES connected in dimension i.

STEP 8. Check "rangelimiter" function in dimension i.

STEP 9. Evaluate change in cost for each move betwan pairs of PES independently.

STEP 10. Accepthejest moves Using exponential function independently.

STEP 11. Broadcast new cell locations to all other procesrors.

SEP 12. ENDFOR
..

SEP 13. ENDFOR;

STEP 14. ENDWHILE; ,

33. cell hignment to Procwsors

W e now describe a technique for mapping a log (P)-dimensional hypercube onto a two-

dimensional area using an example six-dimensional hypercube. The d t s can be generaked to 1
other dimensions. In the 64-ptocessor hypercube, a processor having a binary address ___ -

-
p sp - - pi - p is connected to ptocessor p p - - - pi - * p o via a link in dimension i . We pro-

I
R

pose that each processor be assigned an approximately equal area portion of the total chip area

which can be viewed as a virtual 8 X 8 square grid. Each virtual grid corresponds to a horizontal

portion of a number of rows. (For example, for a standard circuit with 16 rows of cells, each pro-

cessor in a 64-procc3sor hypercube will be in charge of one-eighth the horizontal length of two of

the rows.)

25

The cells are initially assigned randomly to Merent processors such that each p~cessor has

an approximately equal number of cells assigned to it. The cells within each processor are also ran-

domly placed with no regard to area overlaps. We also tested with a strategy of cell assignment

such that the sums of areas of cells assigned to each processor is approximately equal to

where Am is the area of the m* cell. But because of the large number of moves that are accepted

at high temperatures in the initial stages of the annealiig process. it does not make any di.j€erence

which strategy is used since the cells get randomly dispased anyway. Since all cells have constant

height, each 7 therefore is assignad a rectangular portion of the chip area. The correspon-

dence between procesmr addresses and virtual grid regions on the physical chip area is shown in

Figure 3.1. By choosing such a map. we guarantee that the processors that are adjacent in a pre-

determined set of four dimensions of the hypercube allow for all nearest NorthSouth---West

neighbor displace/exchanges. The other two dimensions of the hypercube are used for

displadexchanges acrose larger distances in the area map. For example, in Figure 3.1. processor

26. which controls grid location (3.4). has a a 4-link to processor 10, a 3-link to processor 18, a 2-

link to processor 30, and a &link to ptocesw>r 27, which correspond to the nearest neighbors in the

North(2.4). South(4.4). EaSt(3.5) and Wed331 directions: in addition, the 1-lii to processor 24

and the 5 - l i i to ptocssor 58 control grid locations (3.1) and (6.4). that are distance 3 away from

(3.4).

We assume that each pmcessor contains a list of cells currently assigned to this processor

along with the following information for each cell to aid in the computation of the cost function in

parallel among procesors in the hypercube:

(1) The width of the cell

(2) The (x.y) coordinate location at which the center of the cell is currently placed

(3) A list of nets to which this cell is COM~CW

4

A

V

26

dim

\ 2 1 0

111 100 543\ OOO 001 011 010 110 101

5

-
13

29

21

53

-
61

2 1 6 OOO

001

011

010

110

111

101

100

7 4

15 12

31 28

20
- .

52 55

63 -60

42 I 46
44 47 45

34 1 38 39 37
- _ .

36 - -

Figure 3.1 Area map of 64-processor hypercube

27

(4) For each net listed in (4). a l i i of other cells, to which the net is connected. along with the

(x.y) pin location(s) w i t h i these cells I
The state of any particular cell is composed of the information.in (1) through (4) and is

packed within a continuous block of memory to allow for easy packet transfer of information

that are adjacent in the two dimensions of the hypercube corresponding tb the East-West nearest

neighbors in the physical area map is a h maintained in each processor. Figure 3.2 shows an ez~m-

ple of the blocked memory data structure for typical cells.

'

Because of the nature of the simulated annealing algorithm, a very complex cost function can

be used which takes into account many different aspects of a particular circuit configuration. The

cost function for the standard cell placement problem consists of three parts:

(1) Estimated wire-length using haff the perimeter of the bounding box rule

(2) Overshoot or undershoot of each row length over or under the desired row length

(3) L i a r area overlap between cells in the same row

These are graphically shown in Figure 3.3 with corresponding cost functions. The horizontal work

space length is calculated to be equal to 11046 of the desired length of every row. The cells for a

28

net 1

net 2

(X.Y) 4

(x.y) 2 I

I , cellidIM2 1

net 2

~ width

next cell - M3 c*-- ... I -ter k y)

’ C I net id - N2 -4
#pins13

(x.y> 1 1’ (x.y) 2 + I k y) 3

Figure 3.2. Example net and corresponding memory structure.

1
1
1

1
1
I
I
1
I,
I
I
1
I
I
1
I
I
I
1
I
1

29

given row. therefore, have at least an additional 109b of length in which to move in each row.

However. the cost penalty associated with going over or under the desired row length is calculated

using the desired length and not the 110% length of each row.

3.6. MoveGeneradon

After the cells have been distributed among the proccssors of the.hyprcube, each processot

repeatedly interacts with its neighboring ptocessors in each of the d dimensions of the hypercube.

The set of steps involved in a parallel set of moves is outlined in Figure 3.4. At each time step, P / 2

pairs of ptocessors participate in the evaluating P / 2 moves.

3.7. IXmmdonofMovw

3.7.1. aMssterahipalcction

For each pair of proccsors (p,q) connected in dimension i. one of them is chosen to be the

Master and the other to be the Slave using thecriteria listed in SrIEp 1 of Figure 3.4 to ensure that

the plllstershl ‘p of the pair alternates betwan processors in alternate iterations. The choice is not

random as in [54] because it would then involve an extra synchronization message between the pro-

cessors. and we wish to reduce the communication overhead as much as possible. W e alternate

mastership between iterations because otherwise, in a h e d scheme. we would bias the displace-

ments of cells from the Master to the Slave procesor resulting in the Master processor having no

cells after s e v d iterations.

3.7.2. Selection of move

At each iteration of the Timberwolf algorithm the generate function is performed with one

of two types of cell movements randomly chosen to create a new circuit conQuration for analysis.

These moves are:

(1) Displacement of a single randomly selected standard cell from its present

(2) Exchange in position of two randomly selected standard cells

position to a randomly selected point anywhere within the physical work space

30

................... MS.. 4-
c -L

...

1 over

f

cosr(wL) = x-span + Y-span

...
cOSr(E0) - I row,lngth_desired - actual-row-lngth I X 5

I
8
1
i
1

............

*

............
cOSr(A0) - (linear overlap) 2

Figure 3.3. Cost function evaluation.

31

1
I
I
1
I
I
I
I
I
I
I
I
i
1
I
I
I
8
I

PROCEDURE PARALLEL MOVES:
STEP 1 For each pair of pmcessors (p.q) ~ 0 ~ t ~ ~ t . d in dimension i. if the imer-hp-count is even

and if p < q. then p is chosm to be the Master, q to be the Slave;otherwise vice versa.

STEP 2 Master randomly decides if next move will be an exchange or a displacement. favoring the
latter by a factor of 5 to 1. The Master also decides tartdomly with qual probability
if the move will be an intraprocusor or interprocessor exchangddisplace.

cEu(p) with (x.y)-position POS(p) within its allocated area map and sends the data
structure of CELL(p) to processor q. Meanwhile processor q (Slave) a h randomly
selects a cell CELL(q) with (x.y)-position POS(q) within its allocated area map. and
sends the data structure of cEu(q) to processor p.

STEP 3.1 If MOVE = INTER-PROCESSOR EXCHANGE. processor p (Master) randomly selects a cell

STEP 4.1 Compute (CELL (p),CELL (q)) -
&(WL .CELL (p)JWS (4 1.p I + A 2 W L CELL (4)JWS (p >a I

+ AJAO C2Z.L (p) p O S (p + A d U 0 .CELL (p)JWS (q)a
+ &(A0 .CELL (q) B S (4)a 1 + &,<A0 ,CELL (4)sOS (p >,p 1
+ Am C E U b)~W(P) .P + A@O ,CELL (p)sOS(q)a
+ A,(EO CELL (4)JWS (4)a + A&TO .CELL (4 >mS (p 1.p

STEP 5.1 Processor q sends the portion of the cost function it computed to processor p.

STEP 6.1 Go to STEP 7

STEP 3.2 If MOVE = INTRA-PROCESSOR EXCHANGE, procesor p (Master) randomly selects two cells,

STEP 4.2 eOmpute hw (CELL 1(p),CELL2(p)> - A1(WL ,p > + A@O ,p + A&?iO ,p

STEP 5.2 Go to !7"P 7

CELL 1 (p and C E U z (p 1. both within its allocated area map.

STEP 3.3 If MOVE - INTER-PROCESSOR DISPLACEMENT. processor p (Master) selects a cell CELL(p)
with position POS(p) within its allocated area map and sends the data structure for CELL(p)
dong with the portion of the cost function it has computed to processor q (Slave). Processor
q selects a random position POS(q) within its area map and computes the remainder of
the cost function.

STEP 5.3 Go to STEP 7.

STEP 3.4 If MOVE = INTRA-PROCESSOR DISPLACEMENT. processor p randomly selects a cell,
CELL (p), and a position, AOS (p >. within its allocated area map.

STEP 4.4 compute Ad- (CELL (p >sOS (p >> AlWL + AJAO 9 + &(EO

STEP 7 Master accepts/njects move using exponential function ACCEPT (DELTA X)
END PROCEDURE;

Figure 3.4. Parallel moves in the hypercube.

32

A move can be either an exchange or a displacement. Which of these is actually executed is

randomly chosen by the Master in STEP 2 of Figure 3.4. The ratio of singlecell displacements to

cell exchanges has a profound &est on the quality of the final placement. The best results were

observed to occur when the random selection favors displacements in a ratio of approximately 5 to

1 &dar to the result reported in [lo]. In addition, the Master decides if the exchange or displace-

ment move will be an intraptocessor (completely within the Master) or intdrprocesor (between the

Masttr and the Slave). The best results were observed to OCCUT when the number of intraprocessor

moves is qual to the number of intetprocesror moves. Orientation mirroring of cells was not

implemented.

3.73. Cust calculation of exchange clam move

We now discuss the cost function calculation for an intqmcesmr exchange, Le.. STEP 4.1. of

Figure 3.4. which is the most complicated of all the move types. (The case of an i n t r a w r

exchange, !STEP 4.2, is very simple.) We break up the task of calculating the cost of an interproccs-

sor exchange move into 10 subtasks that are distributed equally among the Master and Slave pro-

cessors. The first term. A1(WL .CELL (p)JW (q 1.p) deals with the change in the wire length due

to the movement of CELL(p) from POS(p) to FQS(q). This is calculated by estimating the change

in half the perimeter of the bounding box of each net. Thii term can be calculated by pmcessor p

alone. since it keeps information about all the nets to which cEu(p) is connected, along with all

the (x,y> locations of cells that are on the same nets. and can read POS(q) (which is the new (x,y>

location for CEU(p)) from the message sent by procesmr q. The term

Az(WL ,CELL (q)JVS (p),q relates to the change in wire length due to the movement of CELL(q)

from pOS(q) to POS(p), and is computed in an identical manner by processor q- The term

A3(A0 ,CELL (p) A I S (p 1.p deals with the change in the area overlap of cells due to the move-

ment of CEU(p) out of POS(p) and is calculated by pmcessor p since it has information about all

the cells that are near a given (x.y> location within processor p's area map. When CELL(p) is

moved out of location POS(p). it may remove area overlapping of cells. The term

1
I
I
8

I
33

A4(A0 ,CELL (p)sOS (q 1.4 deals with the change in the cell area overlap due to the movement of

CELL(p) into POS(q) and is calculated by processof q since it has information about all the cells I
that are near a given (x.y) location within proarrsor p's area map. When cEu(p) is moved into

location PoS(p). it might create additional cell area overlap. The terms As and A,j are similar calcu-

lations for cEu(q). The term A m .CEU (p) B S (p),p) deals with the change in actual row

length compared to desired row length (edge overshoot or undershoot) wheh. cEu(p) is moved out

of POS(p). and is calculated by proassor p. The term A 8 W ,CELL (p)sOS (q 1.q) deals with the

change in edge overshoothndershoot when cEu(p) is moved into POS(q), and is calculated by

processor q. The terms 4 and A10 are! similar calculations for cEu(q).

I
1

I
1

I
1
I
1
I
I
i
I
I

3m7A cost calctilsdon for displaamenta
.I

We now discwss how the cost function is calculated for an interprocessor disglacunent class

move, STEP 4.3. (The intraprocesmr displacement calculation in STEP 4.4 is relatively straightfor-

ward.) We break up the task into 5 subtasks that are shared between the Master and the Slave pro-

cessors. The term AJWL ,CELL (p)sloS (q 1.4). computed by proassor q. is the change in wire

length due to the movement of cELL(p) from POS(p) to pOS(q). The term

Az(A0 .CELL (p)sOS (p 1.p l0 computed by proassor p0 is the change in cell area overlap caused by

the movement of CELL(p) out of POS(p). The term AJAO CELL (p >JVS(q 1.4 1, computed by

pmcesor q. is the change in cell area overlap caused by the movement of cEu(p) into POS(q).

The term A4(E0.CELL(p)syIS(p),p). computed by procffsor p. is the change in edge

overshoothnddoot caused by the movement of cEu(p) out of POS(p). The term

A & Z I ,CELL (p)sOS (q 1.4 1, computed by ptocessot p. is the change in edge overshoothndershoot

caused by the movement of CELL(p) into POS(q).

3.8. AnncalingSchcdule

In any simulated annealing algorithm. two important criteria are the choice of the initial tem-

perature and the rate of demase of the temperature. For the choice of the initial temperature. we

I

34

adopted the heuristic that at the initial temperatures. we should accept 95% of all moves for which

there is an increase in the cost function. Hence. prior to starting the actual annealing algorithm, we

calculate the change in cost functions for 10 X N (N - number of standard cells in circuit) single

moves within the hypercube. The average change, A, is calculated for those moves in which the

change in cost is positive. This average cost is then used to find a proper initial temperature using

the following formula:

A
Tinit =--

The temperature of the system is then reduced after each stage of the algorithm according to

the cooling schedule given by

where (Y varies from 0.80 to 0.94 and decreases to 0.1 during the h a l stages of the algorithm. Tbis

variation is table-driven. as shown in Table 3.1. By using this strategy, during the initial stages of

the algorithm virtually every new state is accepted and the temperature is reduced quite rapidly.

Table 3.1. Variation of alpha with temperature.

Greater Than

20.000 0.84 Wl
0.94

I 5
~

I 1 0.70 I 1.5
I 0 I 0.10 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

35

During the intermediate stages of the algorithm. the temperature is reduced in such a way that the

average change in cost AC for proposed moves is approximately equal from iteration to iteration.

When the temperature is reduced below 1.5. rapid reduction in temperature is iuitiated in order for

the system to fitmfy converge to a local minimum of the cost function, The h a l stopping criterion

is satisfied when the temperature reaches a minimum value of 0.1.

In order to enhance convergence during the later stages of the algokithm. e range l i i t i n g

mechanism is incorporated similar to Timberwolf [lo]. For single intrapmcessor displacements. a

rectangular window is centered at the center of the cell to be displaced. A row is randomly

selected which intersects the window and is within the locally allocated work space. A random

position is then selected within that row and within the window or locally allocated work space.

which ever is smaller. For proposed pairwise cell exchanges and interproccssot displacements. a

move is attempted only if (1) the vertical distance betwan the change in movement of cell(s> is

less than or equal to the vertical span of the range limiter window and (2) the horizontal distance

between the change in movement of cell(s) is less than or equal to the horizontal span of the range

limiter window.

Initially when the temperature is at its maximum value, the horizontal and vertical span of

the range limiter window are qual to twice the span of the comsponding dimension of the physi-

cal work space. After the initial temperature is deterrnined, the approximate number of decades.

d . from zero is detamrn ' ed. Because it is desirable to have the window size shrink slowly, the hor-

izontal and vertical window spaus are made proportional to the logarithm base 10 of the value of

the temperature. The actual formula controlling the respective window dimensions are shown

below.

36

Regardless of row separation. the vertical range l i t e r is restricted from reducing below the dis-

tance needed for inter-row movement until the temperature of the system drops below 5.

At high temperatures during the simulated annealing process. we do not restrict the distance

over which exchanges and displacements of cells can occur. Gradually, as the temperature is

decreased for each procesor, the range limit is also decreased accordingly until eventually certain

dimensions of the hypercube are "frozen," i.e.. changes between pairs of h r s connected via

those dimensions are effectively inhibited.

At each new temperature, the system is allowed to stabilize. This is accomplished by collec-

tively attempting to generate a user-speciiied number of new states per cell at each

stagdtempcrature of the system. For example. given a lo00 cell circuit for which a user wishes

300 attempts per cell, 300000 new states per stagdtcmperature will be attempted. The number of

attempts per cell is directly proportional to the running time of the algorithm, and is the only user

speciki parameter which influences the run time. Large numbers of attempts per cell will give

better placement but at the cost of excessive execution times. In general, to get the best perfor-

mance to execution time ratio, Table 3.2 should be used as a guideline for various size circuits.

Table 3.2. Suggested attempts per cell for various size circuits.

1000 300

2500 600

1500 400
2000 500

I I

3000 I 700 I

I
I
I
I
I
I
I
B
I
I
I
D
I
I
I
B
I
I
I

I
U
1
I
I
I
I
U
E
1
I
I
1
I
I
I
1
I

37

3.9. Broadcasting New Cell Locations

Once the cells have been moved to new locations. these updated locations have to be sent to all

processors so that they can update all net and pin information &ected by the move. Two schemes

for performing this task were investigated.

The fitst one uses uses the property of the existence of Hamiltonian circuits in the hypercube

topology [S I . This scheme operated in the following manner. Each processor which has an

updated cell location informs its Hamiltonian c h i t succeSSOr of the updated value of the cell

location. This proassor would then inform its Hamiltonian circuit successor which would do the

same. It can be easily seen that if all P processots contained updated cell locations. it will take P-1

time skps for all the updated cell locations to be available at all the processors. Figure 3.5 shows a

threedimensional hypercube with labels on procc&ng nodes and links. Using this simple scheme.

if processor 0, which is labeled MO. Bas an updated cell location to broadcast throughout the hyper-

cube, a possible Hslpniptonian circuit is MO. M1, M3. M2, M6. M4. M!!* M7. This broadcast uses

t i L1, L2.U. L12. L8. Ls. and M requiring 7 time steps. Sice each message transfer is

extremely expensive. we decided to abandon this Simple scheme and adopt a more complicated but

extremely efIicient one.

In the second scheme, each processot having a set of new cell locations broadcasts this infor-

mation to all its log(P) neighbors in the &rst time step along its l i i in log(P) dimensions. In the

next time step. the procesors that have just received these messages from the fitst time step for-

ward the messages to their own neighbors connccted via links in the higher-most log(P>i-l dimen-

sions where i equals the dimension of the link along which a message was received during the Ihst

time step. In the j th time step, all processors receiving messages from the j -1" time step forward

the messages to their neighbors in the higher most log(P>i-1 dimedons where i again equals the

dimension of the link along which a message was received during the j-l# time step. In the case

of multiple initial processors wanting to broadcast modified cell locations, the messages are com-

bined where naded at intermediate nodes before forwarding. This scheme guarantees that the

38

broadcasting is completed in log(P) time steps without codicts for links. Figure 3.5 shows a

threedimensional hypercube with labels on processing nodes and links. Table 3.3 shows the steps

involved in broadcasting updated cell locations from processors 1. 2. and 7 which are labeled as

M1. M2, and M7 in Figure 3.5.

The entries in Table 3.3 are of the form Mi(j,k) which represents a message which originated

from processor Pi during the first time step and moves from processor PI b Pk during the current
. .

time step. For example, in time step 2, message M7(6.4). which has originated from P7, is

transmitted from procesmr P6 to P, along a dimension 1 link. It can be verif~ed that all messages

reach all processors within 3 time steps. In case of codicts for using a particular link at a particu-

lar time step. messages arc combined. For example. in time step 2, link L9 has two messages

Ml(0.4) and m(0.4) which tepresmt messages originating from processors PI and Pz but moving

from P o to P4 during time step 2.

A unique feature of our algorithm is that once messages are combined for transmission over a

particular link, they need not be split up at intermediate nodes for transmission over separate

links. The process of updating cell locations will take part at all nodes by extracting information

from the received messages and using this information to modify locally affected cell structures.

I
1
1
1
I
I
1

1
1
I
I
I
I
I
I
I
c

a

39

L7-(3

I
~ i 2 I L?O

Figure 3.5. Thredimcnsional hypercube.

Table 3.3. Broadcast steps for three-dixnensional hypercube on a message from nodes 1.2. and 7.

40

CHAPTER4

ALGORIT%€M IMPLEMENTATION AND PEBFOBMANCE

4.1. Implementation

The advantage of our algorithm over Timberwolf is that it is much faster. W e have implt

mented the algorithm in about 4500 lines of C code. Due to the unavailability of an actual Intel

hypercube at the present time at the University of Illinois, initial testing of this algorithm has been

completed Using the Intel iPSC Simulator running on a SUN 3/50 work station system under UNIX

4.2 [431. Initial algorithm testing has only been attempted on a small scale due to excessive simula-

tor execution times.

4.2. P l a c e m e n t R d ~

It should be noted that in the parallel annealing scheme. since we have deviated from the

serial acceptance of moves. we cannot assume the convergence properties of the annealing algo-

rithms to be valid. The theoretical convergence properties are still a subject of futun research.

However, we have experimented with positive results on a wide variety of standard cell circuits,

some of which were randomly generated. others were obtained from industry and universities.

We will first report the the performance of our algorithm on a 16-procesor hypercube using a

small 64-standard cell circuit. which was randomly generated and has several clusters of cells with

high connectivity. At each temperature of the annealing process. approximately 100 new states

were attempted per cell. After 45 temperature reductions, the stopping criterion was satisfied with

the final cell placement (Figure 4.1) showing excellent clustering characteristics. W e have also

implemented a uniprocessor version of the simulated annealing algorithm which is slightly simpler

than Timberwolf in that the only moves that are allowed are exchanges and displacements and

only standard cells are handled (no macro-cells or pads). Also as in the parallel algorithm

41

I
1
1
8
t

implementation, there is no hashing to enable fast search among cells for overlaps. The results of

the final placements for that implementation are shown in Figure 4.2. Our parallel algorithm gives

a final placement cost that is 1Wo better. The final placement cost for several standard circuits and

percentage improvement in placement for the parallel algorithm over the uniprocessor algorithm

are shown in Table 4.1.

The &a% of the parallel simulated annealing was studied at each tem'vture . In Figure 4.3.

it can be seen that the system cost (which can be calculated exactly in the hypercube only through

additional message transfers) is a continuously decreasrn g function of temperature. This validates

empirically that even though the acceptancdrejectioctions of moves were performed on the basis of

outdated information, our algorithm has the same general convergence property as the uniprocessor

algorithm.

Figure 4.4 shows the variation of the percentage of exchanges and displacements that are

accepted with temperature. It is clear that in the initial stages of the algorithm (higher tempera-

tures). a large percentage of both types of movs are acccptcd. As the temperature is decreased, the

percentage of acceptances of both types of moves demases. However. at extremely low tempera-

tures. the percentage of acceptances of displacements in- with practically no acceptance for

exchanges. The increase in the acceptance of displacements is primarily due to only intraprocesor

displacements being attempted as governed by the implemented range limiter.

1
I
I
I

Since we did not have access tu an Intel hypercube at the University of Illinois to evaluate the

speedup of our algorithm, we present here an estimate of the expected speedup. The Intel Simula-

tor does not give any timing information for message communication. so timing bas to be estimated

from other sources. The running time of the algorithm depends on two separate components Corn-

putation and Communication. W e will present estimates of both in the following sections.

42

Figure 4.1. Cell placement with 16-processor hypercube

Figure 4.2. Cell placunmt with uniproceswr TimberWolf

. . . - . - .

II
1
I

cells
64

43

~ ~ -~ _ _ _ _ _ _
Hypercube change--

29248 32135 10%

I
I

183
286
469

I
D

63094 76498 21%
96778 115359 19%

159759 . 195066 22%

Table 4.1. Placement wiring length comparison

a-

5--

a--

2

1 --
I I I I

I I

c

&
a

Figure 4.3. Temperature vs cost

;!
/.* !

! C-

Temperature
Figure 4.4. Temperature vs percentage accepted moves

44

Number
cells

64
183

43.1. Computation

Intraprocessor Intqmcesor Intxaprocessor Intqmcesor
Displace Displace Exchange Exchange

Master Slave Master Slave .

5 3 4 7 4 3
8 4 5 10 8 7

To evaluate the computation cost per move (exchange and displacement). we implemented our

algorithm on a single processor of the Intel hypercube simulator. We performed lo00 random

moves of both the exchange and displacement classes and evaluated an average computation time.

The remlts of these tests are given in Table 4.2. The CLOCK command in the simulator gives the

running time on the machine on which the simulator is running, which w& a SUN 3/50 work sta-

tion using a Motorola 68020 CPU which is rated to be 2.7MlPs [56]. The Intel hypercube nodes

consist of Intel 80286 CPUs which have been reported to be 0.78MIPs 1371 or 3.5 times slower than

the Motorola 68020 for the predominantly integer-oriented computation performed in our algo-

rithm. Hence. the computation time per move on the Intel hypercube will be greater as given in

Table 4.3.

286 10
469 10
800 11

2357 11

43.2. Communicationcosta

- ~

_ - -- - I 5 7 11 9 8
6 8 11 9 8
6 8 11 10 9
7 9 13 10 9

-

W e will use the results of some benchmark studies performed by Reed and Grunwald at the

University of Illinois on communication costs on the Intel ipsC [38]. The results are summarized

in Figure 4.5. which shows the delay in transfer of messages of varying size for simultaneous

exchanges and unidirectional message transfers along a link in the Intel ipsC. W e therefore need to

Table 4.2. Move timing requirements on MC68020 in milrisccd nds.

45

I
1
I
E Table 4.3. Move timing requirements on 80286 in milli.caeo nds.

a a Y m a I S

Packet S i (bytes)

Figure 4.5. Link delay for various packet sizes.

I 46

communication costs. During the distributed cost calculation phase, the entire data structure for a

candidate cell is sent tb a neighboring processor over a single link in the hypercube. Table 4.4 8
I shows the range of message sizes for various size standard cell circuits and corresponding required

communication times derived from Figure 4.5.

1 4.33. Expecteaspeedup

By combining these timing results and taking into account the parallelism involved in the cal-

culation of the move cost. the time to complete each of the four types of moves was calculated as

given in Table 45. The time required to broadcast updated cell information has bcen shown in Sec-

tion 3.9 to require only log(P) communication steps. On the average. only 28 bytes of information

are needed in each broadcast message for each individual change in a cells position. Combining of

packets at intermediate nodes causes the intermediate time steps in the algorithm to be slower than

the earlier and later stages. A complete broadcast cycle for a six-dimmsional hypercube should

require approximately 18.2 milliseconds if all nodes have a cell whose movement needs to be

broadcast to the red of the system. Unfortunately. each node in the Intel hypercube is not able to

- .

a
1
I

Table 4.4. Memory usage for standard circuits.
I
I
r
I

3
I

a

47

Table 4.5. Estimate of time to complete the four types of.
moves in milliseconds using Intel hypercube

I 2357 I 33.0 I 30.0 I 39.0 I 33.0 I

actively use all of its log(P) links at the same time due to architectural limitations. Thus. the

actual number of simultaneous messages that can be transmitWrweived will be somewhere

between 2 and log(P). In the worst case only a single exchange of data between ptocessing nodes

can occur: hence. a complete broadcast cycle for a Six-dimensi~~l hypercube will require approxi-

mately 64.7 milliseconds.

Using these estimates. we can determine the expected speedup of our parallel algorithm over a

similar uniprocssor version. If our algorithm were to be run on a six-dimensional hypercube using

the 8OO-cell standard circuit, then at each iteration. 32 parallel moves will be attempted. It is to be

expected that at least one of these moves will be an inthprocessor exchange which will be the

bottluicck in terms of timiig. The time to complete these 32 moves and update will be between

51.2 ms and 97.7 ms depending on update broadcast timing. For a uniprocessor version of this

algorithm. the 32 moves will be distributed in a 5 to 1 ratio between displacements and exchanges.

Computational time will thus be (25.6 X 33) + (6.4 X 33 + 16) - 1072 ms with the additional 16

ms added for time to complete updating of cell structures. In the hypercube. this updating is done

while waiting for communications. Using these results. the estimated speedup of the Intel hyper-

cube over the UniptocesPor version will be somewhere between 11 and 21. Speedup estimates for

other standard circuits arc given in Table 4.6.

48

Number
Cells

Table 4.6. Time to complete 32 moves in milliseconds.

Uniprocesror six-diiensionalHypercube Speedup
min max m i n m a x

64
183
286

528 39.2 85.7 6.2 13.5
817 48.2 94.7 8.6 17.0
991 51.2 97.7 10.1 19.4

469
800

I 2357 I 1102 I 57.2 103.7 I 10.6 19.3 I

~~

993 51.2 97.7 103 19.4
1072 51.2 97.7 11.0 20.9

49

Recently. many rcsclllchers have started to investigate speeding up &ulated annealing algo-

rithms by running them on parallel processor systems [ll, 13,14,15,54.571. Many of these

parallelized placement algorithms have not only been found to be considerably faster but also to

converge to a ftnal placement which is more optimal than s i m i i uniptocessor simulated annealing

algorithms. For example. our parallel version of the simulated annealing algorithm shows an aver-

age 6nal placement improvement of 19% over a similar unipmceisor algorithm for a variety of

industry standard circuits as has been shown in Table 4.1.

The betta performance of these parallel algorithms appears to be caused by the restrictions

the parallel implementations place on the distances over which moves can occur and the use of

slightly outdated cell placement information caused by multiple moves that interact with each

other being accepted at each parallel iteration.

In the following sections of this chapter. we present an improved standard cell placement

algorithm based on simulated annealing which incorporates several features inherent in a parallel

processing environment. These features involve incorporating two techniques: (1) allowing multi-

ple cell movements to be considered before updating cell placement data, thus making cost calcula-

tions based on slightly outdated placement data; (2) having the maximum range of cell movements

controlled by a windowing technique which favors certain ranges.

An improved algorithm can be derived which takes advantage of the performance enhance-

ments that appear to come from parallelizing the uniptocessor simulated annealing algorithm. An

algorithmic outline of this new algorithm is given in Figure 5.1.

50

STEP 1. Perform initial random placement of N standard cells

STEP 2. Determine initial temperature.

SIP 3. While 'Stopping criteria" : temperature < 0.1 not reached

STEP 4. Generate new temperature

STEP 5. For ~er -~oop,count - 1 to (N X attemptgrvameter

STEP 6. Randomly select type of move (exchange or displacement)
with distance of cell movement probabilisticly determined

STEP 7. Check 'rangelimiter"

STEP 8. Evaluate change in cost for move

STEP 9. Accept/reject move using exponential function

STEP IO. IF the number of accepted moves is equal to limit (maxaccepted)
THEN updste all saved cell positions and zero number of accepted moves counter
ELSE increment accepted moves counter and save cell movements in temporary storage

STEP 11. ENDFOR;

STEP 12. ENDWHILE;

Figure 5.1. Improved simulated annealing algorithm.

The important difference between this algorithm and the previously discussed uniprocessor algo-

rithm is that a condition has been added which controls when cell placement data are updated.

Also. the generau function has been changed to allow for the distance over which moves take

place not to necessarily be uniformly distributed throughout the work space. Although this algo-

rithm appears to be identical to the parallel version, it should be noted that in the uniprocessor

environment we have much more freedom in implementation over a parallel environment.

5.3. Use of Pseudoparallel M o m

In Figure 5.1, a conditional data update statement has been added which allows a multiple

number of accepted moves to accumulate before an update of the circuits placement is done. This

51

I
I
1

I
1

amounts to having all moves after the first successful move to have outdated placement idorma-

tion on which to determine the cost function. For example. in Figure 5.2. if module M1 is success-

ful in performing a displacement from (#a, yl) to (~ 2 . y 2) during the &st iteration of the b e r

loop. then the circuit should be as shown in Figure 5.3. but because Ml's position is not updated,

the remainder of the cells still calculate cod functions which involve M1 as though it were still at

position (xl. yl). Because of this. if module M 2 . which is connected to MI via a net connection, is

chosen for an attempted move during iteration two. then the half-perimeter wiring cost associated

with the net will be computed using the old position of M1.

I
1
3
1

After each move acceptance. a counter is incremented to keep track of the number of success-

ful moves, since the last cell position update and the new positions of the cells are placed in tem-

porary storage for use later in updating the cell positions. Random cell selection for movement in

subsequent iterations is not able to select cells which have made successful moves, but whose psi-

tions have not yet been updated. This amounts to freezing the cells' positions until the required

I
I
1[rn

c

1)

..................................
f

I : calculated

; M l i j ...
L,,,,

(x I* Y 1)

bounding
box

Actual
bounding

box

I
1
II

Figure 5.2. Original net placement. 5.3. Placement after initial acceptance.

52

number of moves has been accepted. After a specified number of successful moves. the conditional

if statement criterion will be satisfied. and all cell positions will be updated using the information

saved in temporary storage.

The effect of using slightly outdated information appears to give a higher probability of get-

ting out of local minima. since this technique will accept a higher percentage of moves with uphill

changes in the cost function. The accept function limits the magnitude of uphill moves but does

not affect the total number. The number of uphill moves is aected by the random cell selection

and the "observed" placement. By having the observed placement slightly different from the actual

placement. it appears more uphill moves are accepted. By having greater numbus of uphill moves

which are all limited in magnitude by the accept function, the probability of getting out of local

minimaisinmased.

SA. Use of Multiwindowing

Another way of increasing the number of uphill moves is to favor movement of cells over

small distances. These types of moves will tend to have smaller changes in the cost function after

initial dvstuing of cells in the first few iterations of the algorithm has been completed. In the

parallel versions of the simulated annealing placement algorithm. it appears that the average dis-

tance a cell moves in the course of the algorithm has a profound affect on the final placement.

Specifically. it appears that movement of cells should be biased so that movement of cells is res-

tricted more to their local vicinity.

In most of the versions of the placement algorithm, a range limiter connected with the tem-

perature of the system is incorporated which limits the distance any movement of cells can have.

This means at high temperatures a cell will have uniform probability of moving anywhere in the

physical circuit space. From observation of patallel algorithms it appears that this probability

should not be uniform if optimal convergence is desired. but should favor certain distances.

Parallel simulated annealiig algorithms nurning on message-passing architectures are con-

strained to certain probability distributions because of the way the cells are mapped to the

- -1 -
I
I

Window Fraction of EIample Probability

w1 1 120 x 10 25%
25% w2 213 72 X 60

w 3 1/3 36 X 30 50%

Max Dmension S i Within Window

53

- - _ -

_ _ ~

. - - __ - ~

I -- - I

individual processors, Le., the movement of cells from one section to certain other sections in the

physical circuit space is not possible in a single move because procesSing nodes controlling those sec-

tions of the circuit space are not dinctly connected. A uniprocessor version of the simulated

annealing algorithm is not constmined in this manner and thus can incorporate rather complex win-

dowing techniques and distance probability distributions. For example, in Figure 5.4 and Table

5.1. if cell M was picked to perform a displacement. a simple triple windowing scheme could be

used to determine where the cell will be displaced to. In Figure 5.4. the outermost window (W1) is

always equal to the physical work space of the circuit. The ihner windows, W2 and W3. have sizes

Figure 5.4. Example use of windowing in determining cell movement for cell M.

Table 5.1. Example window specihations.

54

proportional to 2/3 and 1/3 of the physical work space and are centered about cell M. In order to

favor local movement, the probability of being in the innermost window (W3) is made greater than

being in the outer windows. In Figure 5.4. cell M has a 5090 probability that its proposed new psi-

tion will be within the innermost window W3. a 25% probability of being within window W 2 but

not window W3, and a 25% probability of being in the physical work space but not within win-

dows W 2 or W3. Because of the deet of the continuously reducing mike limiter. the affect of

windowing disappears in the later stages of the algorithm when the range l i t e r limits movement

of cells to within the co&es of the innermost window.

55. Placement Resalts

The advantage of this algorithm over conventional, uniprocessor simulated annealing algo-

rithms such as Timberwolf is that it converges to a better final placement in a given amount of

time. W e have implemented the algorithm in the C programming language on a Gould 9050 com-

puter system, running under UNIX 4.2. Initial algorithm testing has only been attempted on a
.- ~-

small d e due to ucessivc execution times.

The theoretical considerations of whether the annealing properties arc still preserved when the

cost calculations are based on slightly outdated information and when moves are not uniformly

distributed. is a subject of future research. Experimentally. the improved algorithm has been

shown to operate correctly for a wide range of standard industry circuits of varying sizes and com-

plexities.

W e will first report the performance of this algorithm using a small 64-surndard cell circuit,.

which was randomly generated and has several known clusters of cells with high connectivity. At

each temperature of the annealing process. approximately 100 new state moves were attempted per

cell. A total of 45-tempaature reductions was nquind before the stopping critcrlon of tempera-
. - -

t u r e < O . l was sati&cd.

Initial testing was performed to ascertain the &ects of using multiwindowing and multiple

moves before update. A variety of tests were run in order to derive the optimal combination of

55

Numberof
Multiple Moves

1

these two techniques. The first set of t&ts was concaned with determining the optimal numbes of

moves that should be accepted before cell updating is performed. Table 5.2 shows the fmal place-

ment cost associated with waiting for various numbers of multiple moves before placement update.

For these tests. no windowing was attempted, and thus movement of cells was unrestricted and

uniformly distributed. Table 5.2 shows final placement costs generally decreasing as the number

of multiple moves is increased. The optimal solution occurs when 16 moves have to be accepted

before placement update will occur.

Final Percentage
Placement Cost Change

24125 4.0%

Simple testing of a few windowing schemes using 16 multiple moves showed consistent

demases in final placement cost over using windowing alone as seen in Table 5.3. Because of this,

the remainder of the windowing scheme testing was performed using 16 multiple moves. A

variety of windowing schemes were experimented with as shown in Tables 5.4 through 5.10. The

number and size of windows for each test vary over a wide range. For example, in the ninth entry

of Table 5.9 a triple windowing scheme is uscd with the largest window being equal to the physical

work space; the second window being equal to 213 the size of the physical work space, and the

third window equal to 1/3 the size of the physical work space. The EWO smaller windows are

2
4
8

Table 5.2. Cost vs number of multiple moves for 6 4 4 circuit.

24138 4.196
24003 -0.5%

. 23984 -0.6%
12
16
24

23924 -0.896
23821 -13%
24173 4.296

I I 32 I 24829 I +2.%

56

Number Window S i Distribution of Final
Windows asFraction MovesinWindows Cost

Table 5.3. Comparison of final cost for using or not using 16 multiple moves. I

Percent
Change

8 ~-

Table 5.4. Com-n of cost vs distribution for (1 : 36) double window.

I

Table 5.5. Comparison of cost vs distribution for (1 : lh) double window. 1

I
I

Number
Windows

1

Table 5.6. Comparison of cost vs distribution for (1 : %) double window.

Window S i Distribution of Fml Percent
asFraction MovesinWindows Cost Change

of max
1 100% 23821 -1.3%

Table 5.7. Comparison of cost vs distribution for (1 : 1/31 double window.

2 1 : 2/3 25% : 75%
2 1 : 2/3 20% : 80%

Table 5.8. Comparison of cost vs distribution for (1 : 2/31 double window.

~~ -

23431 -2.99b
23627 -2.1%

2
2
2

1 : 2/3 13% : 87% 24015 -0.5%
1 : 2/3 10%:909b 23923 -0.8%-
1 : 2/3 0%: 1009b 23815 -1.3%

Table 5.9. Comparison of cost vs distribution for (1 : 213 : 1/31 triple window.

Number
Windows

Window Sizes Distribution of
as Fraction Moves in Windows

of max
1 I 1 1 l W 0
3
3
3

1 : 2/3 : 1/3
1 : 2/3 : 1/3

17% : 35% : 48%
12% : 24% : 64%

1 : 2/3 : 1/3 10% : 2090 : 70%
3
3
3 -~ . . ~~

3 I 1:2/3: 1/3 I %9 : 27% : 64%

1 : 2/3 : 1/3
1 : 2/3 : 1/3
1 : 2/3 : 1/3

9 0 : 18% : 73%
12% : 36% : 52%
10%: 30%: 60%

3
3
3

I

23821 I -1.3% I

1:2/3: 1/3
1 : 2/3 : 1/3
1 : 2/3 : 1/3

8% : 24% : 68%
10% : 40% : 50%
8% : 40% : 52%

23654’ I -2.0%
23104 -4.2%

22148 I -8:8 I
I 22314

I 23721 I -1.7% I

58

Table 5.10. Comparison of cost vs distribution for (1 : JG : ?h : U> quadruple window.

centered about the candidate cell for movement. The probability of a cell moving to within each of

these windows but not smaller subwindows is distributed as 8%. 24%. and 68%. respectively. The

final cost using this windowing scheme is 21643. which is 10.2% less than would be derived by an

59

algorithm which docs not use multiple moves or windowing.

Several generalized results can be deduced from these tables. In Tables 5.5, 5.6. and 5.8,

where the inner windows are not SigniSCantly smaller than the physical work space. the b l

placements tend to be decidedly inferior. This is in agrement with an earlier observation that the

movement of cells should be localized to the area immediately surrounding the cell. This statement

is reinforced by noting that in all the windowing schemes. better performa& is generally obtahed

as the percentage of localized moves is increased. For example, in Table 5.7 if the percentage of

moves into the innermost window is increased from 50% to 80%. a 7% decrease in the cost of the

final placement results. It appears that a large^ number of windows, such as in Tables 5.9 and

5.10. will give the best h a l placement results if the probability of movement farther away from

the initial position demases at least linearly with distance.

The effect of the modified simulated annealing algorithm was studied at each temperature. IR

Figure 5.5. it can be sem that the system cost is a continuously decreasing function of temperature.

This validates empirically that even though we are performing the accepts/rejects on the basis of

outdated information, our algorithm has the same general convergence property as the uniprocessor

algorithm.

Figure 5.6 shows the variation of the percentage of exchanges and displacements that are

accepted with temperature. It is clear that in the initial stages of the algorithm (higher tempera-

tures). a large percentage of both types of moves are accepted. As the temperature is decreased. the

percentage of ~ ~ c c e p t ~ c e s of both types of moves decreasear.

The best h a l placement was obtained using a quadruple windowing technique with 16 multi-

ple moves before update. The final cell placement. as shown in Figure 5.7. shows excellent cluster-

ing characteristics. Figure 5.8 shows the b a l placement resulting from using no windowing or

multiple moves. Even visually, the clustering in Figure 5.7 appenrs to be better than in Figure 5.8.

A few of the more promising windowing schemes were applied to two larger industry stan-

dard circuits of sizes 183 and 286 cells with promising results. as shown in Table 5.11.

60

Temperature

Figure 5.5. Temperature vs cost

Temperature

Figure 5.6. Temperature vs percentage accepted moves

.

61

Table 5.11. Comparison of cost vs windowing scheme for industry standard circuits.

-

-

286 I 4 I 1 : % : 4 5 : l k I 5%: 10%:20%:65% I 98312 I -14.8% I

62

Figure 5.7. Cell placement with windowing and multiple moves

Figure 5.8. a l l placement with conventional simulated annealing algorithm

8
I
1
1
1
I
1
8
1
8
I
I
I
8
I
I
8
8

63

CHAPTER6

CXINCLUSIONS

6.1. Summa~y of R d t a

~n this thesis. we have presentmi a p s r a ~ e ~ version of the simulated 'innailing technique for

solving the standard-11 placement problem that is targeted to run in a local memory message-

passing, parallel processing environment, namely the hypercube computer 1541. We have presented

an improved algorithm that reduces the communication overhead. can handle more features of the

placement problem. and is speciscally targeted to run on the Intel hypercube. W e have presented a

novel tree broadcasting strategy for the hypercube that is used extensively in our algorithm for

updating cell 10cati0~ in the parallel environment. W e have implemented the algorithm on an

Intel hypercube simulator. W e reported on the performance of our algorithm on actual standard

cells used in industry [57]. We also presented some accurate estimates of the execution time for the

algorithm. Our algorithm will not give rise to oscillations because we have a number of cells

assigned to each proassor. and cells are chosen randomly for possible exchange. Unlike the con-

ventional array algorithms for module placement. our proposed algorithm will thus not get stuck

at local minima. The possibility of choosing the stme pair of cells for repeated exchange (oscilla-

tions) is very low. Cell exchanges can be performed among nearest neighbors through our novel

ami-mapping technique and also between cells that are large distances away. The results show

that our parallel algorithm is not only faster but also gives better h a l placement results than the

uniprocessor simulated annealing algorithms.

We also prcsmted an improved uniprocesror simulated annealing algorithm based on results

obtained from parallelbation of the simulated annealing algorithm. We have implemented an algo-

rithm which performs multiple moves before updating the circuit placement and uses a multiwin-

dowing technique to generate new candidate circuit codguations. We have shown that this new

64

uniprocessor algorithm consistently converges to a final placement which is more optimal than con-

ventional uniprocesror simulated annealing algorithms and does so for a variety of industry stan-

dard circuits.

6.2. FhtureResearch

6.2.1. Hspercabe algorithm

The ability to propose and evaluate moves efhciently is a requirement of any iterative algo-

rithm. In the present version of the parallel hypercube algorithm the efficiency of computation has

not been optimized as much as it can be. Future versions of the algorithm nced to incorporate

structures for the cells and nets which allow arrangement so that connectivity and spatial location

are quickly available. A simple way to accomplish this for determiniig cell overlap is to sort cells

into bins according to their location within a particular row. This will allow for the use of quick-

sorting algorithms to isolate a smaller subset of cells which need to be checked for overlap instead

of exhaustively checking all possible cells. Presently, in the updating of cell positions after a move

has been accepted. an exhaustive search of all nets and pins is completed to h d all references to

modided cells. Additional information in the cell update broadcast packet containing the identity

of all nets and cells which have references to the given modified cell and need to be updated, would

decrease computation time considerable.

The present version of the parallel simulated annealing algorithm uses a simpliied version of

the standard cell placement problem. In particular, macro blocks. pads, and orientation mirroring

movements have not yet been incorporated.

Because of the high cost of communication in comparison to computation. new strategies for

reducing the amount of communication or performing simultaneous computations should be inves-

tigated. For example. since the initial exchange of full-cell specification structures is very expen-

sive. maybe a smaller message only containing that information that is initially needed for cost

comparison should be exchanged between coop t ing node pairs. While this information is being

8
I
n
1
I
I
1
I
I
I
I
1
I
I
1
1
8

65

used to calculate the change in cost. the full-cell-specikation structure can be transmitted simul-

taneously. Also, since approximately half of all moves are intrapmessor not requiring any com-

munication overhead. the system may be able to be synchronized 80 that every other move is

intraprocesmr, and thus no communication will be required. This will reduce execution time, since

on the average at least on pair of proasing nodes in the syskm will be doing an htcrpmcesror

movement, and thus. the rest of the proassing pairs will have to wait fbr it to complete before

attempting the next set of movcs.

The biggest area for future fescgtch is in attempting to execute this algorithm on an actual

hypercube in order to get actual run time statistics. This information can be used to verify the

expected performance of the algorithm and also may show areas for improvement that have not yet

been identibed.

The majority of the results presented for the improved uniprocessor algorithm are only based

on experimentation with a small. 64-cell circuit. Although a few tests were run on larger circuits

with promising results. future research needs to be done to determine the optimum number of mul-

tiple moves and windowing distribution to use in relation to the Size and complexity of the candi-

date circuit. Performance of our uniprocessor algorithm on larger standard circuits is better than a

conventional simulated annealing algorithm, but still a little less than the placements obtained

when using the hypercube algorithm. It appears that a characteristic of the hypercube environment

that we have not yet identitied is favorably afEccting the h a l placement d t s .

Even though both algorithms have ban empirically shown to converge to a near-optimal h a 1

placement. further research is needed to determu? e if the annealing properties are still preserved

when the cost calculations are based on slightly outdated information, and nonuniform distribution

of moves is incorporated. More importantly, the increase in performance of our algorithms may

only be due to conventional simulated annealing algorithms. such as TimberWolf. which our pro-

grams are largely based on. not using the mod opthum cooling schedule or acceptance function.

66

APPENDIX A

PXCXXDURAL DESCRIPTION OF PABALLEL ALGORlT"l

The parallel simulated annealing algorithm has been implemented in the C programming

language. The software package has been divided into several modules, epch of which controls a

diEerent aspect of program control. Each of the modules is contained in 8 separate file. The fob

lowing sections give details and purpose of the procedures and functions contained in each module.

annealoh

Header file containing all global structure and constant definitions along with external

declarations of global variables. This file is used by all other modules through inclusion in

the compilation process.

hart42

This file contains all source code which is loaded into and run by the host-procesSing node

to initialize the system. distribute the work load to the hypercube processing nodes. and

gather the bal optimized cell placement. This 51e contains the following procedures and

functions:

main - Main functional level procedure of host node which calls all required procedures
and loads the procesSing nodes with executable code.

hpt- - Reads from user a e the initial setting of various system wideparameters
and allocates buffet space for holding the cell specification structures.

inp9t_moas - Reads from user file the size and interconnectivity of the standard logic cells
whose placement is to be optimized.

distribuw-mcxb - Randomly performs the initial placement of cells and distributes the
physical chip (vel~ among the node processom.

init_mod - Initializes the cell-specScation structures at both the cell and net level as
determined by the initial random placement.

67

#nd_mods - Transfers the cell-ikation structure over the hypercube l i i to each
procesSing node as deterrmn ed by the dbtribute-moda procedure.

gather-mods - Retrieves the optimal placement of cells from the pmcesing nodes of the
hypercube.

'This file contains the procedures run at the host node, which prforms terminal and file

output of circuit statistics. These procedures include:

network-cuat - Calculates and outputs to the tenninal the cost of a given cell placement
in terms of edge overlap, cell overlap, and required wire muting.

print-mod-poe - Outputs the position of each of the standard logic cells and the total
area required for the given placement of cells.

print-cbdt - Graphically show the relative position of each of the cells in a given
placement- A file capable of being run using pic I mff -me to create an exact picture of the
given placement is also created.

This file contains the main functional level procedure which is duplicated and run at each

of the node proccsors of the hypercube to perform the parallel simulated annealing algo-

rithm.

This bLe contains the node procedures and functions whii initialize a hypercube node using

system parameters and cell specification structures received from the host node. This file

contains the following procedures and functions:

Wt-params - Initializes the system wide parameters received from the host node.

init-mod - Initialins the locally allocated cell specfiation structures received from the
host node.

neighbra - Determines the identity of the node processors which correspond to the east
and west logical neighbors of the physically mapped circuit.

68

init_bordera - Interacts with logical east and west node processors to create a list of cells
to be used in determining cell overlap attributed to cells in neighboring processors.

File containing communicationsoriented procedures and functions used to transmit and

receive information over the links of the hypercube using logical channels. This me con-

tains the following procedures and functions:

md-mod - Transmits the cell-specitlcation structure of a given cell to a neighboring node
processor-

mc-mod - Receives a cellspecification structure transmitted using send-mod.

bn#dcsst_cost - This function transrm 'ts the partial global cost associated with a node's
locally allocated cells to all other nodes in the hypercube. It then receives and adds partial
costs from all other nodes in order to determine the global cost of the present placement.

bmadmst-updatu - Informs and receives from all other node processors information
regarding changes in cell placement during the last iteration of the algorithm.

ecnd-host - Transmits the dnal placement of all locally allocated cells to the host node.

This file contains various computationally intensive procedures and functions used during

the iterative phases of the algorithm. This file contains the following procedures and func-

tions:

irandom - Produces a pseudorandom integer between given limits

drandom - Prod- a pseudorandom real valued number between given limits.

param-~pdatu - Updates temperature parameter and range limiter.

mod-ael - Randomly selects a cell from a list of locally allocated cells.

dist-ok - Determines if the distance of the movement of a cell is within the bounds set by
the range limiter.

accept-change - Determines if a proposed moved should be accepted based on the change
in cosf and an exponential function of temperature.

switch-list - Switches the row a cell is associated with.

1
I
1
I
I
1
I
8
1
1
1
1
8
I
I

69

insfft,mod - Adds a cell to the present set of locally allocated cells.

remove-mod - Removes a cell from the present set of locally allocated cells.

hd-cost - Determines the partial global cost associated with the present set of locally
allocated cells.

hd-my-ex-ccmt - Determines the change in cost for a proposed intraprocesor exchange
of cells.

hd-=-coat - Determines the partial change in cost for a proposed interprocessor
exchange of cells

hd-diap-ccmt - Determines the change in cod for a proposed intraprocesor displacement
or the slave proemmr's partial cost for a proposed intqmwsor displacement.

dm-- - - es the md5kr't change in cost for an inmpmcesor displace-
mat .

wirc_cost - Determines the change in wiring cost for a proposed move.

overlap-ccmt - Detamur * cs the change in cell overlap with cells within the same processor
for a proposed move.

bordm-cost - Determines the change in cell overlap with cells in logical east and west
neighboring ptocessors for a proposed move0

update - Updates all locally allocated cell-specification stntctuns for a change in a given
ceWs location.

70

APPENNDIXB

PROGRAM USIEBS GUIDE

The parallel simulated annealing algorithm has bem implemented in the C programming

language and divided into seven separate files. A UNIX shell script a e qimed Makefile has been

incorporated to aid in compilation of these files into an executable file that can be used on the Intel

iPSC hypercube. This shell script can be invoked by typing the command : make n . The invoca-

tion of this command will result in the compilation and linking of the source code into two

separate executable modules. These files will be named HOSTn and NOD% and are the executable

code run at the host and node processors. respectively. The parameter n used in the makefile invo-

cation specifies the size of the hypercube one wants the flnal object code to execute on. At present

only hypercubes of 4.16. and 64 nodes have been implemented.

Compilstion Parameters

Several options have been incorporated into the source code which arc activated via the

preproawr #ifdef cornman&. The following options can be activated by enabling the debition

parameter using -Dopeion in the Makefile and recompiling the source code:

DEBUG Allows additional information at each ikration regarding selection,
wst. and acceptance of moves to be printed. (Simulator Only)

PBINT: Enables printing of additional placement and iteration statistics.

After each tempaature change the global cost of the present cell
placement is determined and output.

WEIGHTED: Causes cost calculations regarding wiring to be based on formula

112 perimeter bounding box x MINII, sqrtfnumber pins in net - 2)1

instead of just 1/2 the bounding box.

71

CENTER Specifies that the input fiLe will have cells with only a single pin
in each cell centered in the middle of the cell.

AUTOTEMP . Inclusion of this d a t i o n causes the algorithm to complete an initial step during
which a few representative cell movements are attempted in order to find an optimal
initial temperature that causea 95% of moves with increased cost to be accepted in the
initial algorithm iteration. Normally. the initial temperature will be set to
4.000.000.

Xnput File

Input of system parameters and logic-cell-specifications is via a filt named "data." The first

six integer values in thii flit have the following meanings to the program:

1. Number of attempted moves per cell at each iteration/temperature of system.

2. Standard height of each logic cell.

3. Bytes of memory required to hold all cell-specillcation structures.

4. Desired length of every row of cells in circuit

5. Number of rows of cells in circuit.

6. Desired character prefix for output file.

Following these parameters a variable number of cell-spccification structures should follow.

For each standard logic cell in the circuit the following format is required:

1. Unique global cell identidcation number (consecutively numbered from 0)

2. Cell width

3. Total number of nets cell is a member of

4. For each net specikd in 3.

a) Unique global net identihtion number

b) Total number of pins in net spocided in a.

c) For each of the pins specified in b.

i) Identikation number of cell in which pin is located

IF (preprocessor definition CENTER not defined)

ii) X and Y location of pin relative to center of cell

72

Algorithm output

The majority of the initial and final placement statistics will appear on screen or may be

routed to a usu-specifled file via the UNIX routing commands. At the start of program execution,

the cost of the initial random placement of cells will be given along with a graphical representation

of the relative positions of the cells within each row. At each iteration of the algorithm, various

system parameters will be outputted to inform the user of the algorithm's progress. At completion

of the algorithm. the final placement cost and another graphical circuit rqmsentation will be given.

An output f i e named nphce will also be created in addition to the on smen output. The

p d x n in this file name is the character specified by the user in the input file. This results file will

be used to display the status of the algorithm at each iteration. At the completion of the algo-

rithm. this file will contain a series of rewrds which can be used via the UNM. command

pic I tofl -ma to create an exact representation of the h a l placement.

~~

I
I
1
I
I
I
I
8
I
I
I
1
1
I
8
I
8
I
I

E11

E21

E31

E41

E121

E141

E181

73

0. Wing. "Automated gate-matrix layout." Roc. IlSEE Intematbnd Symposium on Circuits
mrd System, pp. 681485,1982.
A. D. Lopez and H. S. Law. "A dense gate-matrix layout style for MOS LSI.'" IEEE J w .
Sdid State Circuits. vol. SC-15.4, pp. 736-740. Aug. 1980.
M. R. Gorey and D. S. Johnson. in Compurers a d IntractabiLity: A Guide to the Theory of
NP-CtmaphenessS. Freeman. 1979.
M. A. Breuer. "Min-cut placement." Jour. Lksign ArttormztioPr and F d T h a n t Computing.
VO~. 1, pp. 343-382, Oct. 1977.
M. Hanan and J. M. Kurtzberg, "Placement Techniques," in Design Automcttioa of Digital
Systems: Theory and Tschniqucj. ed.. M. A. Breuer. Prentice-Hall, pp. 213-282,1972.
M. Hanan and P. K. WolE. "'Survey of placement techniques,'" Jaw. Dccisiopr and Fadt
Tdetmzt Campu$.. pp. 2841. Oct. 1976.
M. A. Breuer and A. D. Friedman. '*A survey of state of the art automation." Computer. vol.
1. Oct. 1981.
S. Kirkpatrick. C. D. Gelatt. and M. P. Vecchi. "Optimization by simulated annea€ing." Sci-
ens. vol. 220, pp. 671480. May 1983.
C. Wen and A. S. Vicentelli. "'The Timberwolf placement and routing package." Roc.
Custom Integrated Circuits Conf... pp- 522-527. May 1984.
C. Sechen and A. S. Vincentelli. "TimberWolf3.2: a new standard cell placement and global
routing package." Roc. Wrd Design Aut- cafe pp- 432-439, Jun. 1986.
E. H. L. Aarts. F. M. J. de Bont. E. H. A. Habers. and P. J. M. van Laarhoven. "Parallel im-
plementations of the statistical cooling algorithm." V N J a r . Integration. vol. 4, pp. 209-
238.1986.
E. Felten. S. Karlin. and S. W. Otto, "The traveling salesman problem on a hypercubic,
MIMD computer." Roc. 1985 PmOUel Rocessing Gmf .. pp. 6-10, Aug. 1985.
M. J. Chung and K. K. Rao. "Parallel simulated annealing for partitioning and routing."
Rw. I- Int. Mf. OPL computer &sip (IccD.86). pp. 238-242. Oct. 1986.
S. A. Kravitz and R. A. Rutenbar. "Multipmcessor-based placement by simulated anneal-
ing." Roc. Urd hsign Atttom4tion Conf.., pp. 567-573. Jun. 1986.
R. A. Rutenbar and S. A. Kravitz. "Layout by annealing in a parallel environment." Roc.
IEEE Int. Conf. ma comprctcr Design (ICCLl-86). pp. 434-437. Oct. 1986.
D. J. Faber. "The distributed computer system." Comp. Con. Digest. pp. 31-34.1973.
K. E. Batcher. "STARAN parallel processor system hardware." Roc. MIPS-NCC, vol. 43,
pp. 405-410.
S. H. Fuller and S. &bison. "The C.mmp multiprocessor," in Technid Report, Pittsberg,
PA.. 1978.
M. Jordon. "A special purpose architecture for finite element analysis." 24-oc. of In te rnu tbd

J. 0. Tuazon. "Homogeneous m y of microcomputers." Proc. of IEElF Conf. on Circuits, Net-
Conf. 01L P~uZ&Z fi-shg. pp. 263-266. Aug. 1978.

WOrRs, (ULCI Si&. p ~ . 748-752. Oct. 1980.

74

E. P. DeBenedictis. “Multiprocessor programmm ’ g with distributed variables.” in Roc. SIAM
1st Conf. on Hypercube M d t i ~ s s o r s . Knoxville, TN.. Aug. 1985.
G. C. Fox and A. Kolawa. “Implementation of the high performance crystalline operating
system on Intel iPSC hypercube,” in Roc. S A M 1st Gmf. on Hypercube Multi,pracessors.
Knoxville, TN.. Aug. 1985.
N. Carrier0 and D. Gelernter. “Linda on hypercube multicomputers.” in Roc. S A M 1st
hf. on Hypsrarbs Multiprocessors. Knoxville. TN.. Aug. 1985.
R. L. Page and L.. S. Barasch. “Parallel computation, functional programming. and Fortran
8x,” in Roc. S I N 1st Gmf. on Hypercube Muttiprocessa~s. Knoxville, TN., Aug. 1985.
D. Jefferson and B. Beckman, “ V i u a l time and time warp on the JPL hypercube.” in Roc.
SAM 1st Cimf. on Eypercube Multiprocessors. Knoxville, TN.. Aug. 1985.
J. Barhen and E. C. Halbert, “ROSES an dcient scheduler for precedenceconstrained tasks
on concurrent multiprocasors.” in h. SAM Ist Gmf. on Hypercube M&processws,
Knoxville. TN.. Aug. 1985.
D. W. Krumme. K. N. Venkataraman. and G. Cybenko. “Hypercube embedding is NP-
complete.” in Roc. SAM 1st hf. on Hyper& Muttiprocessors. Knoxville. TN.. Aug.
1985.
H. Sullivan and T. R. Brashkow. **A large scale homogeneous machine I & E*’ Roc. 4th An-

M. C. Pease, “The indirect binary n-cube microproassor array.” in I’ Tran. Cornput..
pp. 458-473. May 1977.
N. M. Allakhverdiyev and S. S. Sarafaliyeva. “Choice of multiprocessot system configuration
for digital signal pmcessing.” in SR Report - Cybettretics, Gwnputers and Automath Technd-
ogy. Foreign Broadcast Information Service. July 7.1983.
D. J. Evans, in Par& Recessing Systems. London, England: Cambridge University Press.
1982.
R. W. Hockney and C. R. Jesshope. in Purde2 computers. Adam Hilger Ltd.. pp. pp. 10,

C. L. Seitz, “The cosmic cube,” in Comm. ACM. pp. 22-33. Jan. 1985.
Intel Scientific Computers. “ipsC The First Family of Concurrent Supercomputers,” 1985,

Ametek System I4 User’s Guide C Edition Version 2.0. Ametek Computer Research Div., May
1986.
J. F. Palmer, “A VLSI parallel ~upn~~mpute r . ” in Roc. S I N 1st Conf. on Hypercube Mul-
tiprocessors. Knoxville. TN.. Aug. 1985.
Intel Corporation. “Introduction to the iAPX 286.” 210308-001. Feb. 1982.
D. A. Reed and D. C. Grunwald. “Benchmarking hypercube hardware and software,” SIAM
2nd Conf. on HyperaCbe Multiptocessors (to appear), Aug. 1986.
J. Tuazon, J. Peterson. M. Pniel. and D. Lekman. “Calmh/JPL Mark II hybercube con-
current proccsor.” Rac. 1985 Pardel Prooessing Conference, pp. 666-673. Aug. 1985.
J. C. Peterson. J. Tuazon. D. Lieberman. and M. Pniel. “The Mark III hypercubeensemble
concurrent computer.” Roc. 1985 PmcllleI Rocessing conferenoe. pp. 71-73. Aug. 1985.
G. C. Fox. “Annual Report 1983-1984 and Recent Documentations,” in W e & concurrent
CornputatSon h j e c t . Jet Propulsion Laboratory, Pasadena CA.. Aug. 30,1984.

Symp. on Camput. Architecture. pp. 105-124,1977.

-
42.321.323-324.1981.

product announcement.

I
I
1
I
I
I
I
I
0
I
I
I
1
I
I
1
1
I
I

7s

J. P. Hong. R. D. Tomlinson, N. Patel, and L. H. Pollard. "A hypercube project and a simula-
tor for a hypercube of computers." in A-oc. SIAM Is t hf. on Ziyperarbe Multiprocess~s.
Knoxville, TN., Aug. 1985.
Intel Corporation, "Hypercube Simulator Version 2.1," 310175-002, Jun. 1986.
N. Metropolis. A. Rosenbluth. M. Rosenbluth, A. Teller, and E. Teller, "Equations of state
calculations by fast computing machines." J w . Chsm. Physia. vol. 21. pp. 1087-1091,
1953.
F. Romeo and A. Sangiovsnni-Vincentelli, "Probabilistic hill climbing algorithms: properties
and applications," in Reprint, fig. &. Eng.. University of Califorqia. Berkeley, 1984.
S. Nahar. S. sahni, and E. Shragowitz. "Experiments with simulated annealing." Ruc. 22nd

J. W. Greene and IC. J. Supowit, "Simulated mad ing without rejected moves." Roc. IEEE
In&. Gmf. m Canrpctsr Design (ZCCD-84). pp. 658-663. Oct. 1984.
S. B. Gelfand and S IC. Mitter, "Analysis of simulated annealing for optimization." in A.m.
24th Gmf. OIL Lkision and Gmtrd. Fort Lsuderdale. FX., Dec. 1985.
D. Mitra, F. Romeo, and A. Sangiovanui-Viceltelli, "Convergence and dnite-time behavior
of simulated annealing." in Roc. 24th hf. on Decijion and Control. Fort Lauderdale. FL..,
Dec. 1985.
B. Hajek. "A tutorial survey of theory and applications of simulated daAmcah * g." in Roc.
24th Conf. at Dsdrfar and CvntroZ, Fort Lsudcr&le. FL., Dec. 1985.
S. Gemon and D. Gemon. "Stochastic relaxation, gibbs distribution. and the Bayesian res-
toration of imageS." l&?B Trans. on &#em M y * and Int&gence. vol. 6. pp.

B. Hajek. "Cooling schedules for optimal annealing." in Reprint, De#. Ek. hg., Coordincrt-
ed scienos Laboratory. Chaimpaign-Urbana. 1985.
B. Gidas. "Non-stationary markov chains and convergence of the annealing algorithm." Jour.

P. Banerjec and M. Jones. "A parallel simulated annealing for standard cell placement on a
hypercube computer." Roc. IEEE Int. Gmf. Camputer-Aidsd Design (ICCAD-86). Nov. 1986.
N. Deo. in Graph Thcary with Apphtions to Eng ineehg and Cotnputer Scienorr. Engle-
woods CWs. NJ.: Rentice-Hall, Inc., 1974 .
D. MacGregot. D. Mothersole. and B. Moyer. "The Motorola MC68020," IEElE Micro. pp.

M. Jones and P. Banerjce. "Performance of a parallel algorithm for standard cell placement
on the Intel hypemube." submittsd 24th Design Atdometion hf.. June 1987.

D&gn Aut- carfcr.ncs. pp. 748-752. J u ~ . 1985.

721-741.1984.

Of Stat. P h y h . VO~. 39. pp. 73-131.1985.

101-118, Aug. 1984.

I

1. REPORT SECURITY CWSlFlCATlON

1. SECURITY CWSlFlCATlON AUTHORITY
Unclassified

1

1 b. RESTRICTIVE MARKINGS

3 . OlSTRlWTlON I AVAILABIUTY OF REPORT
None

1

PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-87-2209 (CSG-60)

1. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
Coordinated Science Lab (If appliobk)

I. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

Approved for public release;
distribution unlimited 3. DECLASSIFICATION IOOWNGR4DING SCHEDULE

University of Illinois N/A I
L ADORESS (City, State, m d ZIPCaAJ

NASA
7b. ADDRESS (City, St*@, a d ZIPCodrJ

a. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL
ORGANIZATION Of apdicabl+)

NASA

NASA Langley Research Center
Hampton, VA 23655

c ADDRESS (City, State, a d ZIPCodc)

..I.".. Y Y L L & & b , &

Hampton V A 326 I 1101 W. Springfield Avenue
Urbana, IL 61801

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NASA NAG-1-613
10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. No. ACCESSION NO.

rn .
1. TITLE (lrulvde Secvnfy UauificationJ

A Parallel Simulated Annealing Algorithm for Standard Cell Placement on a HvDPt-rllhe C-

2. PERSONAL AUTHOR(S)

3a. TYPE OF REPORT

Jones Mark Howard
13b. TIME COVERED

6. SUPPLEMENTARY NOTATION

- _a
7. COSATI CODES 1 18. SUBJECT TERMS (Conbmr. on R V C ~ i f necessary a d ickntim by bloclc nvmkrJ

I
. .

FIELD I GROUP I SUB-GROUP Module Placement, Uniprocessor Algorithm, Parallel _ - _ - _ -_ - _ -
I I I Simulated Annealing Algorithm, Standard Cell Placement,
I I -

I 1 I Hypercube Computer
:9. ABSTRACT (Contmuc on reverse if neccsrry and identi@ by block w m k d

SEE BACK

20. OlSTRlBUTlON l AVAIUBlLlTY OF ABSTRACT 121. ABSTRACT SECURITY CWSlFlCATlON
~ UNCLASSlFlEDNNLlMlTED 0 SAME AS RPT. 0 DTK USERS I Unclassified

22a. NAME Of RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Qncluck Area Codc) 22c OFF ICE SYMBOL

DO FORM 1473, a4 MAR
~ ~ _ _

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

83 APR editton may k used until exhausted.
All ather o d i i m are 0bd.U.

UNCLASSIFIED
ZURlTY CLAUICICATIOY OC THIS CAOI

A parallel processing algorithm for stundard cell placement suitable for execution on a hyper-

cube computer is presented. In the past there have been proposed several parallel algorithms for

performing module placement that are suitable for execution on a twodimenSiOna1 array of prOces-

soots. These algorithm0 had several limitations; namely, they got stuck at local minima. were sus-

ceptible to oscillation, could not handle variable size modules (standard cells). and allowed only

nearest neighbor exchanges. Recently, simulated annealing. a general purpose method of multivari-

ate optimization. has ban applied to solve the standard cell placement problem on conventional

uniprocessor computers. These algorithms do not get stuck at local minima and can handle

modules of various sizes. but take an enormous amount of time ta execute. In this thesis, a parallel

version of the simulated annealing algorithm is presented which is targeted to run on a hypercube

computer, A strategy for mapping the cells in a two-dimensional area of a chip onto processors in

an n-dimensional hypercube is proposed such that both small and large distnnce moves can be

applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation

of the cost function in parallel among all the processors in the hypercube is described along with a

distributed data structure that needs to be mred in the hypercube to support parallel cost evalua-

tion. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell loca-

tions in the parallel environment. Studies on the performance of the algorithm on euunple indus-

trial circuits show that it is faster and gives better dnal placement results than the uniprocessor

simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based

on the improved results obtained from parallelization of the simulated annealing algorithm. This

enhanced algorithm, through the use of nonuniformly distributed moves and slightly outdated

placement &tR. Is found to be less likely to get stuck at local minima. and is found to converge to a

better hd p h u r t for a variety of industry standsrd circuits.

I

UNCLA!3SIFIED I
SECURITY CLASSlt lCAt lON O f THIS P A G E

~

